

Generation of THz CSR with laser-bunch slicing in UVSOR-II electron storage ring

Serge Bielawski⁵, Clement Evain⁵, T. Hara³, M. Hosaka² M. Katoh¹, S. Kimura¹, <u>A. Mochihashi¹</u>*, M. Shimada¹, Christphe Szwaj⁵, Y. Takashima², T. Takahashi⁴

¹ UVSOR facility, institute for molecular science
² Nagoya university, ³ RIKEN/SPring-8
⁴ Kyoto University, ⁵U. Sci. Tech de Lille
*Present affiliation... JASRI/SPring-8

Contents

- Bunch-slicing experiment in UVSOR-II
 - Setup
 - Experimental results
- Bunch slicing with amplitude-modulated laser
 - Principle
 - Experimental results
- Summary

UVSOR-II Electron Storage Ring

Electron Energy Circumference Natural Emittance Natural Energy Spread Natural Bunch Length RF Frequency Revolution Frequency Synchrotron Frequency Damping time Undulator Length 600 MeV 53.2 m 17.4 nm-rad 3.4 x 10⁻⁴ 3.1 cm (~100psec) 90.1 MHz 5.6 MHz 14.4 kHz 19 msec 2.31 m

The laser system is settled outside the ring now!

CROR Generation of a Dip on a Bunch

USOR Ti:Sa Laser and Timing System

Pulse Energy2.5mJ/pulsePulse Width130fs ~ 2psRepetiton Rate1 kHz(synchronized with RF signal of 90.1MHz)Wavelength790 ~ 810nm

Detection System at BL6B, UVSOR-II

QMC Instruments Ltd

Detector Type	Hot electron (InSb)	
Fime Resolution	1.6μsec	
Spectral Range	3 ~ 50cm ⁻¹	
Sensitivity	5×10 ⁵ V/W (including beam-line optics)	CO metalogner men Officients au
Femperture	4K (cooled by Liq. He)	

Martine-Puplett interferometer Resolution<0.5cm⁻¹

Institute for Molecular Science

FT-THz

ectromicroscopy

station

Time (µsec)

Temporal relation between the laser trigger and THz signal observed at

The intensity of the THz pulse is 10⁴ - 10⁵ larger than that of the normal THz radiation.

•Pulse width of the single pulse ~ 1.6 μ s ... that almost corresponds to the response time of the detector. •Revolution period of the beam = 0.18µs ... detectors that have faster response time are needed ! Institute for Molecular Science

Experimental Results (I_b dependence, Spectrum)

•Squared-dependence of the intensity on the peak current ... CSR

•The CSR spectra depend on the pulse duration of the laser ... longer laser pulse duration makes longer dip, so that longer wavelength components become coherent radiation.

'Chirped pulse beating'

Weling, A.S & Auston, D.H, J. Opt. Soc. Am. B 13, 2783-2791 (1996)

1. Making chirp on the laser pulse with a pair of gratings $E(t) \propto \exp(-i\omega t - at^2)$

2. Leading the chirped pulses to the Michelson interfelometer, and adjusting optical delay.

Generation of the beat structure that corresponds to the frequency difference between two chirped pulses

 $I = |E(t + \tau/2) + E(t - \tau/2)|^{2}$

= $C_1 + C_2 \cos[2 \operatorname{Im}(a)t\tau + \omega\tau]$ Institute for Molecular Science

Changing CSR frequency

no.1 no.2

no.

no.4

25

20

We changed the beating frequency and estimated the laser modulation frequency from the auto-correlator measurement

Clear correlation between the laser frequency and the CSR peak spectrum

Summary

- We have observed intense THz synchrotron radiation by laser-bunch slicing method in UVSOR-II.
 - squared dependence of the peak intensity on the peak current ... CSR
 - band width depends on the pulse duration of the laser
- THz CSR generation with AM laser pulse
 - narrow band THz CSR
 - peak frequency depends on the AM (tunable)