

Bunch compression at the SPring-8 linac for successive SPring-8 generation of THz pulse train in the isochronous ring

Y. Shoji, T. Matsubara, Y. Hisaoka, T. Mitsui, NewSUBARU, LASTI, University of Hyogo

T. Asaka, H. Hanaki, H. Dewa, T. Kobayashi, A. Mizuno, T. Taniuchi, S. Suzuki, H. Tomizawa, K. Yanagida

SPring-8, JASRI

Contents

- Introduction to CSR
- Basic Idea
- Demonstration Experiment
- Upgrading plan

Introduction

Applications of Short Electron Bunch

Short Pulsed X-Ray

For time resolving experiments

- \rightarrow Sub-ps (femto-second) pulse
- \rightarrow Intense ps pulse is still valuable

Coheremt synchrotron radiation (CSR)

- \rightarrow extremely strong THz radiation
 - \rightarrow stable radiation

Coherent Synchrotron Radiation (CSR)

Radiation power from *N* electrons in a bunch

$$P_{tot}(\omega) = p(\omega) \left[N + (N^2 - N) |f(\omega)|^2 \right] \begin{pmatrix} p(\omega) : \text{ power from an electron} \\ f(\omega) : \text{ form factor} \end{pmatrix}$$

Form factor

 $f(\omega) = \int \rho(z) \exp(i\omega z/c) dz \qquad (\rho(z): \text{charge density}, \int \rho(z) dz = 1$

The Concept

- 1. Make short and intense bunch in a linac
- 2. Let the bunch circulate in an isochronous ring
- 3. Use short pulsed X-ray train or THz CSR

Merits

(i) Short and intense pulse is obtained at ring BL.--> Light for many BLs at the same time

(ii) Short pulse train with fixed period--> It helps to confirm the synchronization.

(iii) Existing accelerations are enough for a few ps pulse.--> No special expense is required

Simulation of bunch compression

Magnetic compression along the Li-NS transport

Bunch Length Measurement

Multi-turn Circulation

Energy dependence of path-length

$$\Delta L/L = \alpha_1 \delta + \alpha_2 \delta^2 + \alpha_3 \delta^3 + \dots$$
 (here $\delta = \Delta E/E$)

 α_n : *n*-th momentum compaction factor

NewSUBARU storage ring Invert Bend \rightarrow control α_1

• $\alpha_1 = 1.3 \times 10^{-3} \rightarrow \approx 0$ • $\alpha_2 = 0$ (setting accuracy $\approx 10^{-3}$) • α_3 no control knob ($\alpha_3 \approx 0.5$)

Tracking simulation in the non-linear rf bucket

Initial state; just after injection $\Delta E/E = \pm 0.5\% \ \Delta \tau = \pm 4$ ps

Tracking simulation in the non-linear rf bucket

Initial state; just after injection $\Delta E/E = \pm 0.5\% \ \Delta \tau = \pm 4 \text{ps}$

 $\alpha_1 = 0$ After 100 turns $\alpha_1 = -1 \times 10^{-5}$ After 100 turns

Quasi-isochronous ring

Optimum α_1 was larger than the expected Bunch elongation was faster than the expected

50 turns with σ < 3ps

CSR detection

Turn by turn CSR power

Stronger CSR at the injection It lasted longer than the normal condition

contribution of form factor $f(\omega)$

Sensitive to a small change of the bunch length

Summary of Experiment

Short Bunch Circulation

- •succeeded to keep $1\sigma < 3ps$ for 50 turns
- larger CSR lasted longer

Of course, still there are many problems ...

Future Improvement

Ring (magnet system)

• improve stability

; temperature control

SPring.

- ; magnetic field
- ; better tuning

= improvements for the daily operation Linac (electron gun)

thermionic gun --> photo-cathode RF gun

Photo-cathode RF gun

Photo-cathode rf gun

Electron Gun	Thermionic	Photo-Cath		
Energy Spread	<u>+</u> 0.5%	<u>+ 0.1%</u>		
Bunch Length	2.2 ps	< 1 ps		
Bunch Charge	< 0.1 nC	> 1 nC		
Initial state $\Delta E/E = \pm 0.5\%$; $\Delta \tau = \pm 2.2 \text{ps}$ $\alpha_1 = -1.5 \text{ X}10^{-6}$; after 500 turns				
Initial state				
$\Delta E/E = \pm 0.1\%; \ \Delta \tau = \pm 1\text{ps}$				
$\alpha_{\rm l} = 0.5 110^{\circ}$, alter 500 tullis				

Comparison with other methods

Beam Parameters	QI operation (BESSY-II)	Laser Slicing (ALS)	Short Bunch Circulation (SPring-8 Linac & NewSUBARU) Demonstration Photo-cathode
bunch length (ps)	1.0 (1 <i>o</i>)	<u>0.16 (1<i>o</i>)</u>	$3(1\sigma)^{guin} < 1.0$
charge (pC/bunch)	~ 1	~ 10	24
Pulses per shot	quasi-dc	1	~ 50 >100 ?

stable sh

short

strong

Beam physics study

1. Stable operation of quasi-isochronous ring

2. Circulation of an extreme beam Similarity with ERL's arc Problem would be enhanced with multi-turn circulation Ring parameter can be tuned using stored beam

Future project at Tohoku Univ.
 Circulation of sub-mm pulse

 [H. Hama, 27th International FEL Conference (2005)].