Gwyn P. Williams, Mike Klopf & the JLab Team Jefferson Lab 12000 Jefferson Avenue Newport News, Virgnia 23606

UVSOR Workshop on Terahertz Coherent Synchrotron Radiation September 23-25, 2007

Introduction to the Jefferson Lab CSR THz Source

Source Characteristics

• 1 microJoule per pulse, <u>75 MHz</u>, 180 fs FWHM

10 MW peak, 100 Watt average power

• Achieved using superconducting linac with cw rf

Overview of the CSR THz Programs at Jefferson Lab

- Tissue interactions and safety limits.
- Imaging.
- Spectroscopy development signal to noise etc..
 - ⇒ magnetism, dynamics of quasiparticles, spin
 - \Rightarrow localization effects
- **Future**
- Electro-optical detection
- Quantum coherence and control.
- Coherent Half- and Few-Cycle Sources for Nonlinear and Non-Equilibrium Studies.

Jefferson Lab - where are we?

Jefferson Lab, Newport News, VA

Home of 2 accelerators: each with superconducting linacs, photo-cathode guns

JLab Free Electron Laser facility

Jefferson Lab Facility Spectroscopic Range and Power

Jefferson Lab

Coherent Synchrotron Radiation Generation - theory

REFERENCES

R.A. Bosch, Nuclear Instr. & Methods A431 320 (1999).

O. Chubar, P. Elleaume, "Accurate And Efficient Computation Of Synchrotron Radiation In The Near Field Region", proc. of the EPAC98 Conference, 22-26 June 1998, p.1177-1179.

$$\frac{d^2I}{d\omega \, d\Omega} = \left[N[1 - f(\omega)] + N^2 f(\omega) \right] \times \left[\text{single particle intensity} \right]$$

 $f(\omega)$ is the form factor – the Fourier transform of the normalized longitudinal particle distribution within the bunch, S(z)

$$f(\omega) = \int_{-\infty}^{\infty} e^{i\omega \hat{n} \cdot \vec{z}/c} S(z) dz \Big|^{2} \frac{\text{Larry Carr}}{\frac{dE}{d\overline{v}} \approx 2 \times 10^{-25} \text{ J/cm}^{-1/\text{electron}}}$$

REFERENCES

S.L. Hulbert and G.P. Williams, Handbook of Optics: Classical, Vision, and X-Ray Optics, 2nd ed., vol. III. Bass, Michael, Enoch, Jay M., Van Stryland, Eric W. and Wolfe William L. (eds.). New York: McGraw-Hill, 32.1-32.20 (2001).

S. Nodvick and D.S. Saxon, Suppression of coherent radiation by electrons in a synchrotron. Physical Review **96**, 180-184 (1954).

Carol J. Hirschmugl, Michael Sagurton and Gwyn P. Williams, Multiparticle Coherence Calculations for Synchrotron Radiation Emission, Physical Review A44, 1316, (1991).

JLab THz Beam Schematic with Optical Beam Ray-tracing

JLab THz Beam Pattern on Mirror 1

Jefferson Lab THz spectra and total power

JLab Terahertz Beam Extraction and Transport

Mirror 1 - courtesy of Richard Wylde, (Thomas Keating)

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Department of Energy

JLab power permits large area imaging ~ m²

Optical transport output in User Lab

Real time image

Thomas definerson National Accelerator Pacinty Facility

Operated by the Southeastern Universities Research Association for the U.S. Department of Energy

efferson

Challenges of Stand-off THz Imaging

- Providing sufficient THz power to illuminate a large field of view and to image in real time
- Properly collecting the scattered THz radiation from the target region (transmission mode generally not useful)
- Filtering of the THz induced thermal IR
- Properly imaging onto a detector array
- Creating imaging arrays designed specifically for THz
 imaging

Imaging / bio-medical cancer screening

Basal cell carcinoma shows malignancy in red. Teraview Ltd. 1 mW source images 1 cm² in 1 minute

100 W source images whole body (50 x 200cm) in few seconds

Imaging / security screening at portals

Clery, Science **297** 763 (2002)

Spectra of explosives courtesy of Teraview

Jefferson Lab & U. of Delaware Team

THz Imaging Schematic

The Camera

Micron OEM Camera Core-A Success Story

Over 12,000 Microns have been delivered in support of applications requiring the smallest, lightest, and lowest power thermal camera. Over 90% of all Micron cameras have been integrated into sy

Really Uncool

Eliminating the traditional thermoelectric cooler (TEC) reduces overall camera weight, as well as enabling ultra-low power operation and a turn-on time of less than 2 seconds.

http://www.corebyindigo.com/PDF/TVMicron.pdf

THz Imaging Layout

THz Induced Thermal IR

- Images taken using the stock Ge lens
- THz passes through paper target and is reflected off of the imaging target
- Heating due to absorption of THz heats the paper and the imaging target, producing the thermal IR seen above

Test Pattern Imaging Target

Test of Imaging Resolution

35 mm

35 mm

- Raw THz images are processed to reduce the background and improve contrast
- Current configuration resolved down to the 1mm wide contact pads
- Polyethylene lens filtered the thermal IR, but does not image well

THz Imaging Covered Target

CD mailer covering

cloth covering

23 Jan 07 Jill McQuade, PhD Research Physiologist Human Effectiveness Directorate Air Force Research Laboratory

- Many applications for THz sources
- High-power sources and detectors are being developed
- Bioeffects need to be understood for the health and safety of personnel
- Bioeffects efforts need to catch up to or even lead technology development
- Bioeffects data pertaining to the health effects of highpowered THz exposure are non-existent

Brooks Air Force Base – Human Effects Division, Terahertz Team

Dr. Jill McQuade	HEDR	Physiologist: Project Lead
Dr. Bob Thomas	HEDO	Physicist: Modeling
Mr. Jason Payne	HEDR	Biomedical Scientist: Modeling
Ms. Nichole Jindra	HEDO	Biologist: Expt, pilot lead
Dr. Semih Kumru	HEDO	Physicist: Expt
Mr. Victor Villavicencio	HEDO-NG Cont	Physicist: Expt
Dr. Ron Seaman	HEDR-GD-AIES Cont	Physiologist: Expt, protocol
Mr. Alex Salazar	HEDR-GD-AIES Cont	Physiologist: Expt
Dr. Walter Hubert	HEDR	Molecular Biologist: Biotechnology

Brooks Terahertz Experiments & Modeling

- Performed at Jefferson Laboratory
- Experimental Validation of models
 - characterization of the beam
 - exposures of wet chamois, 2 phantoms

- ED_{50} (2 s exposure) chamois = 7.14 W/cm²
- Model predicted 4-5 W/cm²

Laboratory layout for spectroscopy & pump-probe

Measured JLab – FEL THz Spectrum in Air

Early IRSR experiments

Experimentation Issues – NSLS Signal to Noise

Jefferson Lab

Experimentation Issues – FEL Signal to Noise

Shear Interferometer – Sievers and Agladze, Cornell

THz HFTS during experiments at Jefferson Lab FEL

This work supported by the Office of Naval Research, the Joint Technology Office, the Commonwealth of Virginia, the Air Force Research Laboratory, The US Army Night Vision Lab, and by DOE under contract DE-AC05-060R23177.

Jefferson Lab Facility Spectroscopic Range and Power

Jefferson Lab

- We have a high power CSR THz source capable of illuminating a large field of view which can be imaged at full video rates
- Initial results have resolved features down to 1mm
- Filtering of the thermal IR is necessary to utilize the important properties of THz radiation
- Development of compact high power THz source will enable deployed systems (Advanced Energy Systems)
- We have a user program in place to look at biological effects
- We have just started our spectroscopy programs

This work supported by the Office of Naval Research, the Joint Technology Office, the Commonwealth of Virginia, the Air Force Research Laboratory, The US Army Night Vision Lab, and by DOE under contract DE-AC05-060R23177.

EXTRA SLIDES

Example of niche of 4th. Generation \rightarrow **Si:H**

Experimentation Issues

Frequency (Hz)

dB(u)

Concluding Remarks

- Over the past 10 years Jefferson Lab has constructed and commissioned a next generation light source based on an Energy Recovered Linac.
- Our experience with generating ultrafast electron beams and diagnostics, can help implementation of Cornell ERL.
- This ERL, or an x-ray ERL yielding THz light could have a huge impact on high pressure research.

Summary

- Tremendous opportunities
- In class of our own
- Must stay at scientific frontiers
- Great local university teams
- Helping Florida State, Cornell, Daresbury and other 4th. generation light source facilities

This work supported by the Office of Naval Research, the Joint Technology Office, the Commonwealth of Virginia, the Air Force Research Laboratory, The US Army Night Vision Lab, and by DOE under contract DE-AC05-060R23177.

Daresbury data holds world record!!

JLab FEL Drive Laser Noise

Comparing Conventional THz Sources and Coherent THz Synchrotron

Synchrotron Radiation Generation - 2 time-scales

Hirschmugl, Sagurton and Williams, Physical Review A44, 1316, (1991).

Multiparticle coherence – Free Electron Laser

Hirschmugl, Sagurton and Williams, Physical Review A44, 1316, (1991).

Spectrum of uric acid

cm⁻¹ spectral resolution Recorded at SFTC Daresbury

Schematic of JLab 4th. Gen. Light Source Operation

Laser Wavelength ~ Wiggler wavelength/(2Energy)²

Experimentation Issues

Frequency (Hz)

dB(u)

Generic Light Source Landscape – Average Brightness

1st. Generation – parasitic use of nuclear and high energy physics machines

2nd. Generation – dedicated storage rings – higher current, lower emittance

3rd. Generation – storage rings with insertion devices (wigglers), lower emittance

4th. Generation – typically linac based, lower emittance, multiparticle coherence

Generic Light Source Landscape – Average Brightness

Generic Light Source Landscape – Peak Brightness

Generic Light Source Landscape – Peak Brightness

Non-linear dynamical effects using high field THz light

t = 20l = 16t = 140t = 130

High electric fields are predicted to generate localized modes!

A biopolymer chain buckles and folds on itself due to an instability produced by a <u>nonlinear localized mode</u> – Physics Today Jan. 2004 p43. Mingaleev et al Europhys. Lett. **59** 403 (2002)

JLab collaboration with Al Sievers, Cornell U.

