

UV cathodoluminescence of Gd^{3+} doped and Gd^{3+} – Pr^{3+} co-doped YAIO₃ epitaxial thin films

Yuhei Shimizu¹, Kazushige Ueda^{*,1}, Hiroshi Takashima^{**,2}, and Yoshiyuki Inaguma³

- ¹ Department of Materials Science, Graduate School of Engineering, Kyushu Institute of Technology, 1-1 Sensui, Tobata, Kitakyushu 804-8550, Japan
- ² Electronics Photonics Research Institute, National Institute of Advanced Industrial Science Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan

³ Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan

Received 6 October 2014, revised 4 November 2014, accepted 10 November 2014 Published online 16 January 2015

Keywords epitaxial thin films, Gd³⁺, photoluminescence, pulsed laser deposition, ultraviolet cathodoluminescence, YAlO₃

* Corresponding author: e-mail kueda@che.kyutech.ac.jp, Phone: +81 93 884 3339

**e-mail h-takashima@aist.go.jp, Phone: +81 29 861 5594

Thin films of YAIO₃:Gd³⁺ and YAIO₃:Gd³⁺–Pr³⁺ were prepared on LaAIO₃ (001) single crystal substrates by pulsed laser deposition (PLD). Both films were grown epitaxially and their surfaces were uniformly smooth. Under UV excitation at 216 nm, YAIO₃:Gd³⁺ film did not show any intense photoluminescence (PL); on the other hand, YAIO₃:Gd³⁺–Pr³⁺ film showed intense Gd³⁺ PL at 314 nm through Pr³⁺ 4f–5d absorption. Under electron irradiation with acceleration of 2.00 kV, both films showed UV cathodoluminescence (CL) from Gd³⁺ ions. In contrast to PL, the CL intensity of the YAIO₃:Gd³⁺ film was four times greater than that of the YAlO₃:Gd³⁺–Pr³⁺ film. The PL excitation spectrum of YAlO₃:Gd³⁺ in vacuum UV region revealed the presence of an intense excitation band at 155 nm assignable to YAlO₃ host absorption. This observation implied that the energy of accelerated electrons was absorbed by the host and then transferred to Gd³⁺. Pr³⁺ co-doping was found to weaken the Gd³⁺ emission in CL because the excitation energy absorbed by the host was transferred to not only Gd³⁺ but also Pr³⁺ accompanying visible emission and nonradiative transition in Pr³⁺.

© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction Some UV emitting perovskite-type oxide phosphors such as $(Y_{1-x}Lu_x)AlO_3:Ce^{3+}$, $(Y_{1-x}Lu_x)$ AlO₃:Pr³⁺, and YAlO₃:Gd³⁺ have been reported in the form of single crystals or powders [1–11]. Ce^{3+} and Pr^{3+} show a broad UV emission peak attributed to 5d-4f transition. Because their emission decay time is as short as approximately 10 ns, Ce^{3+} and Pr^{3+} doped perovskite-type oxide phosphors were examined to use as a scintillator [1-9]. On the other hand, Gd³⁺ shows a sharp UV emission attributed to 4f–4f transition from ${}^{6}P_{7/2}$ to ${}^{8}S_{7/2}$ ground level in Gd³⁺ [12, 13]. Using the sharp UV emission, some applications such as a phototherapy lamp for skin diseases and a transilluminator for DNA analysis are anticipated [14, 15]. Because the studies of these phosphors have been mainly conducted in the form of single crystals or powders [1-11], their thin films have not been extensively studied yet in terms of both film growth and optical evaluation.

Perovskite-type oxides frequently form high quality thin films on perovskite-type substrates. Actually, the growth of high quality phosphor thin films such as $AHfO_3:Tm^{3+}$, $ATiO_3:Pr^{3+}$, and $ASnO_3:Tb^{3+}$ on $SrTiO_3$ substrates has been reported along with their intense visible photoluminescence (PL) [16–18]. Because oxide phosphors have excellent chemical stability, thin films of the perovskite-type oxide phosphors are suitable for some application to thinfilm-type optoelectronic devices.

The PL of Gd^{3+} doped YAlO₃ was recently examined and Pr^{3+} co-doping was found to enhance the UV PL of Gd^{3+} [10, 11, 19]. To develop surface emitting devices or other optoelectronic application, the examinations of cathodoluminescence (CL), as well as PL, of the Gd^{3+} doped YAlO₃ phosphors are important. Although Gd^{3+} doped YAlO₃ is a promising phosphor in PL, no investigation on its CL has been reported yet. In this study,

Wiley Online Library

fine thin films of YAlO₃:Gd³⁺ and YAlO₃:Gd³⁺– Pr^{3+} were grown by pulsed laser deposition (PLD), and their UV CL properties were evaluated for future application to Gd³⁺ UV emitting devices.

2 Experiments YAlO₃:Gd³⁺ and YAlO₃:Gd³⁺-Pr³⁺ films were deposited on LaAlO₃ (LAO) (001) pseudocubic single crystal substrates by PLD. Polycrystalline YAlO₃: Gd^{3+} and YAlO₃: Gd^{3+} -Pr³⁺ sintered disks with the nominal compositions of $(Y_{0.97}Gd_{0.03})AlO_3$ and $(Y_{0.94}Gd_{0.03}Pr_{0.03})$ AlO₃, respectively, were used as targets. The deposited thin films were annealed at 1000 °C in air to improve crystallinity and luminescent intensities. Detailed PLD and annealing conditions are listed in Table 1. X-ray diffraction (XRD) patterns of the films were measured by an X-ray diffractometer (Rigaku, RINT 2500), and surface morphology of the films was observed using an AFM (Digital Instruments, Nanoscope III). The concentrations of Gd^{3+} and Pr^{3+} in the films were analyzed by XPS (SHIMADZU/KRATOS, AXIS-NOVA) evaluating Gd 3d_{5/2} and Pr 3d_{5/2} peak intensities. Transmission spectra and PL/PL excitation (PLE) spectra were measured using an UV/Vis/NIR spectrophotometer (Jasco, V-570) and a spectrofluorometer (Jasco, FP-6500), respectively. A PLE spectrum in vacuum UV (VUV) region was measured using a polycrystalline YAlO₃:Gd³⁺ disk at the beam line BL-7B of UVSOR in the Institute for Molecular Science. CL spectra of the films were measured using a field emitter with a gate electrode as an electron source and a spectrofluorometer (Jasco, FP-6500) with an optical fiber. In the CL measurements, the acceleration voltage in the electron emitter was varied from 0.00 to 2.00 kV.

3 Results and discussion Epitaxial growth of the films was confirmed by XRD and reflected high-energy electron diffraction (RHEED). An XRD pattern of the YAlO₃:Gd³⁺ film is shown in the inset of Fig. 1. The XRD pattern of the YAlO₃:Gd³⁺ –Pr³⁺ film, which is not displayed in the inset, was nearly the same. Strong peaks assigned to (00*l*) planes were observed indicating the

Table 1 PLD and annealing conditions.

PLD conditions

target	$(Y_{0.94}Gd_{0.03}Pr_{0.03})AlO_3$
	$(Y_{0.97}Gd_{0.03})AlO_3$
substrate	LaAlO ₃ (001) single crystal
laser source	ArF excimer (193 nm)
laser fluence	$\sim 1.2 \mathrm{J cm}^{-2} \mathrm{pulse}^{-1}$
laser frequency	16 Hz
O_2 partial pressure	0.1 Pa
substrate temperature	740 °C
annealing conditions	
atmosphere	air
temperature	1000 °C
duration	1 h

Figure 1 Transmission spectra of YAlO₃: Gd^{3+} and YAlO₃: $Gd^{3+}-Pr^{3+}$ thin films. XRD pattern of orthorhombic YAlO₃: Gd^{3+} thin film is shown in the inset along with the AFM image of its surface.

epitaxial growth of the films. Small lattice mismatch between $YAIO_3$ and LAO (2.2%) are responsible for the epitaxial growth. Streaky patterns observed by RHEED demonstrated a high crystal quality of the epitaxial films. The dopant concentrations in the film examined by XPS were Gd 3.9% for the YAlO₃:Gd³⁺ film and Gd 3.9%/Pr 3.2% for the YAlO₃:Gd³⁺–Pr³⁺ film, which were almost the same with those in the targets. Transmission spectra of thin films and substrate are shown in Fig. 1. Drastic transmittance drop at 220 nm was ascribed to the fundamental absorption edge of LAO [20]. Transmittance of a LAO substrate at 314 nm was found to be high (>60%) enough to transmit Gd^{3+} emission. The transmittances of both films on LAO substrates were as high as that of the LAO substrate, demonstrating their high transmittances. Film thicknesses were estimated to be approximately 220 nm by interference in the transmission spectra. Flat and smooth surface of the YAlO₃:Gd³⁺ film was observed in the AFM image shown in insets. The surface of the YAlO₃:Gd³⁺-Pr³⁺ film was also as fine as that of the $YAlO_3:Gd^{3+}$ one.

Figure 2 shows PL and PLE spectra of YAlO₃:Gd³⁺, YAlO₃:Gd³⁺-Pr³⁺ films, and a PLE spectrum of YAlO₃: Gd³⁺ bulk in VUV region. A sharp emission peak, which was attributed to the ${}^{6}P_{7/2}-{}^{8}S_{7/2}$ transition in Gd³⁺, was observed at 314 nm in both PL spectra. Another small emission peak attributed to the ${}^{6}P_{5/2}-{}^{8}S_{7/2}$ was also observed at 308 nm [12, 13]. In the PLE spectrum of the YAlO₃: Gd³⁺-Pr³⁺ film, an intense broad excitation band was observed around 216 nm, which was assigned to the 4f-5d transition in Pr³⁺ [1-5]. The intense excitation band indicated the excitation energy absorbed by Pr³⁺ was transferred from Pr³⁺ to Gd³⁺, resulting in the distinctive Gd³⁺ emission at 314 nm. On the other hand, no obvious excitation band was observed in the PLE spectrum of the YAlO₃:Gd³⁺ film in the wavelength region above 200 nm. Accordingly, the Gd³⁺ emission intensity was very weak in

Figure 2 PL/PLE spectra of YAlO₃:Gd³⁺ and YAlO₃:Gd³⁺– Pr^{3+} . Solid lines exhibit spectra of YAlO₃:Gd³⁺ and YAlO₃:Gd³⁺– Pr^{3+} thin films. The dotted line exhibits spectrum of YAlO₃:Gd³⁺ bulk.

the YAIO₃:Gd³⁺ film, as far as the PL spectrum was measured using a conventional spectrofluorometer with a xenon lamp. The PLE spectrum of a YAIO₃:Gd³⁺ bulk in the VUV region revealed that an intense excitation band was located at 155 nm (8.0 eV). The energy of the excitation band corresponded to the band gap energy of YAIO₃[21]. Accordingly, it was found that excitation of YAIO₃ host by VUV irradiation led to the intense Gd³⁺ emission even in Gd³⁺ single doped YAIO₃.

Figure 3 shows CL spectra of YAlO₃:Gd³⁺ and YAlO₃:Gd³⁺–Pr³⁺ thin films at electron acceleration voltage of 2.00 kV. An intense UV CL peak attributed to the Gd³⁺ $^{6}P_{7/2}$ – $^{8}S_{7/2}$ transition was observed at 314 nm. Another CL peak attributed to $^{6}P_{5/2}$ – $^{8}S_{7/2}$ was observed more clearly than that in the PL spectra. Because the energy of accelerated electrons is as high as a few keV, the excitation energy by electron irradiation in CL is first

Figure 3 CL spectra of $YAIO_3:Gd^{3+}$ and $YAIO_3:Gd^{3+}-Pr^{3+}$ thin films. Inset shows acceleration voltage dependence of CL intensity at 314 nm.

absorbed by the YAlO₃ host. Therefore, the observation of the intense Gd^{3+} CL peak suggested that the energy transfer from the YAlO₃ host to Gd^{3+} occurred smoothly, which is similar to the intense PL in the YAlO₃:Gd³⁺ bulk observed under VUV excitation. Inset of Fig. 3 shows acceleration voltage dependence of the CL intensity at 314 nm. The films started to exhibit the Gd³⁺ CL peak at the acceleration voltage, the CL intensity of the films increased. At a 2 kV acceleration, the CL intensity of the YAlO₃:Gd³⁺ film was four times greater than that of the YAlO₃:Gd³⁺-Pr³⁺ film.

In the PL spectra, the $YAIO_3$:Gd³⁺-Pr³⁺ film gave more intense Gd^{3+} emission than the YAlO₃: Gd^{3+} film. On the contrary, in the CL spectra, the YAlO₃:Gd³⁺ film showed more intense Gd^{3+} emission than the YAlO₃: Gd^{3+} -Pr³⁺ film. To understand the contrast between PL and CL, the CL spectra of these films are compared, along with the PL spectrum of the $YAIO_3:Gd^{3+}-Pr^{3+}$ film, in the wide wavelength range as shown in Fig. 4. The intensities of the PL spectrum for the YAlO₃:Gd³⁺– Pr^{3+} film were normalized as the PL intensity of Gd³⁺ emission agreed with its CL intensity. In CL originating from YAlO₃ host excitation, the YAlO₃:Gd³⁺ film showed only Gd³⁺ peaks in UV region, whereas the YAlO₃:Gd³⁺– Pr^{3+} film showed not only the Gd³⁺ peaks but also Pr^{3+} peaks in visible region. The CL peaks at 490 and 540 nm were assigned to ${}^{3}P_{0}-{}^{3}H_{4}$ and ${}^{3}P_{0}-{}^{3}H_{5}$ transitions in Pr³⁺, respectively [22]. In PL originating from Pr^{3+} 4f–5d excitation, the YAlO₃: $Gd^{3+}-Pr^{3+}$ film showed no peaks in visible region but the Gd^{3+} peaks in UV region. The observation of the Pr^{3+} visible emissions in CL revealed that the excitation energy absorbed by the host was transferred to not only Gd^{3+} but also Pr^{3+} , and the energy transfer from Pr^{3+} to Gd^{3+} was not dominant in contrast to PL. The contrast of Gd^{3+} emission intensity is probably attributed to not simply the difference of excitation source, PL or CL, but also the difference of excitation target, Pr^{3+} 4f-5d or host excitation.

Figure 4 CL spectrum of YAlO₃:Gd³⁺ and CL and PL spectra of YAlO₃:Gd³⁺–Pr³⁺ thin films in UV and visible region. Inset shows CL mechanisms of YAlO₃:Gd³⁺–Pr³⁺.

Y. Shimizu et al.: UV CL of Gd and Gd–Pr doped YAIO₃ epitaxial films

Furthermore, because concentration quenching of Pr^{3+} emissions in YAlO₃:Pr³⁺ has been reported to occur at Pr³⁺ concentration over 1% [23], Pr³⁺ co-doping at 3% in the YAlO₃:Gd³⁺-Pr³⁺ film implies the presence of non-radiative transitions as well as visible f-f transitions in CL. Although further studies are necessary to analyze the detailed PL and CL mechanisms, it became clear that Pr³⁺ co-doping was ineffective in CL and decreased the overall efficiency of Gd³⁺ emission. Namely, the intense Gd³⁺ CL peaks were observed in Gd³⁺ single doped YAlO₃ because the excitation energy absorbed by the host was concentrated in only Gd³⁺.

4 Conclusion Epitaxial thin films of YAlO₃:Gd³⁺ and YAlO₃:Gd³⁺–Pr³⁺ were grown on LAO (001) substrate by PLD. Regardless of dopants, the transmittance of the films was high and their surface morphology was uniformly smooth. In the CL measurements, YAlO₃:Gd³⁺ was found to give an intense Gd³⁺ emission at 314 nm assigned to ${}^{6}P_{J}-{}^{8}S_{7/2}$ transition. Because Gd³⁺–Pr³⁺ co-doping caused the energy leakage from the host to Pr³⁺, it was concluded that Gd³⁺ single doping was appropriate in CL to transfer the absorbed energy to Gd³⁺ only.

References

- M. Zhuravleva, A. Novoselov, A. Yoshikawa, J. Pejchal, M. Nikl, and T. Fukuda, Opt. Mater. 30, 171 (2007).
- [2] T. Yanagida, K. Kamada, Y. Fujimoto, M. Sugiyama, Y. Furuya, A. Yamaji, Y. Yokota, and A. Yoshikawa, Nucl. Instrum. Methods Phys. Res. A 623, 1020 (2010).
- [3] I. Sokólska, S. Kück, and M. Bałuka, Proc. SPIE 4412, 236 (2001).
- [4] M. Wiśniewska, A. J. Wojtowicz, T. Łukasiewicz, Z. Frukacz, Z. Gałązka, and M. Malinowski, Proc. SPIE 4412, 351 (2001).
- [5] V. Gorbenko, Y. Zorenko, V. Savchyn, T. Zorenko, A. Pedan, and V. Shkliarskyi, Radiat. Meas. 45, 461 (2010).
- [6] J. A. Mares, M. Nikl, A. Beitlerova, N. Solovieva, C. D'Ambrosio, K. Blazek, P. Maly, K. Nejezchleb, P. Fabeni,

and G. P. Pazzi, Nucl. Instrum. Methods Phys. Res. A 537, 271 (2005).

- [7] T. B. de Queiroz, C. R. Ferrari, D. Ulbrich, R. Doyle, and A. S. S. de Camargo, Opt. Mater. **32**, 1480 (2010).
- [8] Y. Zorenko, V. Gorbenko, V. Savchyn, T. Voznyak, M. Nikl, J. A. Mares, T. Martin, and P.-A. Douissard, J. Phys.: Conf. Ser. 289, 012029 (2011).
- [9] Y. Zorenko, V. Gorbenko, V. Savchyn, J. A. Mares, A. Beitlerova, and M. Nikl, Radiat. Meas. 56, 56 (2013).
- [10] Y. Shimizu, Y. Takano, and K. Ueda, J. Lumin. 141, 44 (2013).
- [11] Y. Shimizu, Y. Takano, and K. Ueda, Thin Solid Films 559, 23 (2014).
- [12] H. H. Caspers, S. A. Miller, H. E. Rast, and J. L. Fry, Phys. Rev. 180, 329 (1969).
- [13] L. H. Brixner, C. C. Torardi, and G. Blasse, J. Solid State Chem. 89, 138 (1990).
- [14] S. Okamoto, R. Uchino, K. Kobayashi, and H. Yamamoto, J. Appl. Phys. 106, 013522 (2009).
- [15] S. Kitayama, T. Kita, M. Kawamura, O. Wada, Y. Chigi, Y. Kasai, T. Nishimoto, H. Tanaka, and M. Kobayashi, IOP Conf. Series: Mater. Sci. Eng. 1, 012001 (2009).
- [16] N. Arai, T. W. Kim, H. Kubota, Y. Matsumoto, and H. Koinuma, Appl. Sur. Sci. **402**, 197 (2002).
- [17] H. Takashima, K. Ueda, and M. Itoh, Appl. Phys. Lett. 89, 261915 (2006).
- [18] K. Ueda, T. Maeda, K. Nakayashiki, K. Goto, Y. Nakachi, H. Takashima, K. Nomura, K. Kajihara, and H. Hosono, Appl. Phys. Express 1, 015003 (2008).
- [19] Y. Shimizu, K. Ueda, F. Massuyeau, and S. Jobic, Thin Solid Films 571, 90 (2014).
- [20] S.-G. Lim, S. Kriventsov, T. N. Jackson, J. H. Haeni, D. G. Schlom, A. M. Balbashov, R. Uecker, P. Reiche, J. L. Freeouf, and G. Lucovsky, J. Appl. Phys. 91, 4500 (2002).
- [21] T. Tomiki, M. Kaminao, Y. Tanahara, T. Futemma, M. Fujisawa, and F. Fukudome, J. Phys. Soc. Jpn. 60, 1799 (1991).
- [22] G. Özen, O. Forte, B. Di Bartolo, and J. M. Collins, J. Lumin. 125, 223 (2007).
- [23] M. Zhuravleva, A. Novoselov, A. Yoshikawa, J. Pejchal, M. Nikl, and T. Fukuda, Inorg. Mater. 43, 753 (2007).