Orbital-dependent electron correlation in LiFeAs revealed by angle-resolved photoemission spectroscopy

I. INTRODUCTION

Iron pnictide superconductors [1], especially from the family of BaFe$_2$As$_2$ (namely, 122 type), exhibit a characteristic change in electronic structure even above T_c. For instance, BaFe$_2$(As$_1-x$Co$_x$)$_2$As$_2$ systems have a fourfold rotational symmetry-broken phase (namely, the nematic phase) [2,3] above the temperature T of the spin-density-wave (SDW)/antiferromagnetic (AFM) and structural transitions [4–6]. The nematic phase is considered to be at the origin of anomalous physical properties, such as in-plane anisotropic resistivity [7], the softening of the C_{66} mode [8], the orbital-polarized electronic structure between d_{xz} and d_{yz} orbitals [9], and the pseudogap [10]. In addition, in Ba(Fe$_{1−x}$Co$_x$)$_2$As$_2$ systems, all bands shift with decreasing temperature due to thermally excited carriers in the narrow bands near the Fermi level E_F. It is considered that the band shift of Ba(Fe$_{1−x}$Co$_x$)$_2$As$_2$ systems is related to the temperature evolution of interband charge or spin fluctuations [11]. Because the electronic structure and physical properties above T_c are considered to be closely related to superconductivity, the electronic structure above T_c should be investigated to elucidate the origin of superconductivity in iron pnictides.

The 111-type iron pnictide superconductor LiFeAs is an ideal system for investigating the electronic structure above and below T_c, because stoichiometric LiFeAs shows superconductivity without SDW/AFM and structural transitions, which distinguishes it from other iron pnictides such as the 122 type. Previously, a spin-fluctuation scenario has been proposed for the superconductivity of LiFeAs [12–17]. However, no orbital order/fluctuation behavior is observed in LiFeAs, in contrast to the case for the 122 type. The importance of orbital fluctuation for superconductivity is highlighted by a recent angle-resolved photoemission spectroscopy (ARPES) study [18] and by theoretical studies [19,20]. On the other hand, a possible new superconductivity mechanism has been reported for KFe$_2$As$_2$, in which different effective interactions occur in the individual Fermi surfaces (FSs) [21]. In LiFeAs, the effective interactions in each FS are not yet clarified. Therefore, understanding the origin of superconductivity in iron pnictides requires elucidating the FS-dependent interactions and electronic structure above T_c in these materials.

In this paper, we thus report on the temperature-dependent electronic structure of LiFeAs. We found that the binding energies of both the d_{yz} hole band at the Z point and the $d_{x^2−y^2}$ electron band at the A point increase below $T_c = 19.7$ K [22]. ARPES measurements were performed at the SAMRAI end station of the undulator beamline 7U of UVSOR-III at the Institute for Molecular Science, Japan, using an MBS A-1 analyzer [23]. The energy and angular resolutions were approximately 8 meV and 0.17°, respectively. All measurements were performed on $in situ$ cleaved samples in an ultrahigh vacuum under 1×10^{-8} Pa. We use the same inner potential (15.4 eV) and photon energies (which correspond to the high-symmetry points) as in our

II. EXPERIMENT

Three-dimensional (3D) ARPES experiments were performed on single crystals of stoichiometric LiFeAs with approximately $T_{c,onset} = 19.7$ K [22]. ARPES measurements were performed at the SAMRAI end station of the undulator beamline 7U of UVSOR-III at the Institute for Molecular Science, Japan, using an MBS A-1 analyzer [23]. The energy and angular resolutions were approximately 8 meV and 0.17°, respectively. All measurements were performed on $in situ$ cleaved samples in an ultrahigh vacuum under 1×10^{-8} Pa. We use the same inner potential (15.4 eV) and photon energies (which correspond to the high-symmetry points) as in our
previous study \[12\]. \(E_F\) of the samples was determined with respect to that of an evaporated gold film.

III. RESULTS AND DISCUSSION

Figures 1(a)–1(d) show ARPES images at the \(\Gamma\) \((h\nu = 23\ \text{eV})\) and \(Z\) \((h\nu = 35\ \text{eV})\) points along the \(\Gamma-M\) and \(Z-A\) directions at \(T = 100\) and 12 K, respectively. Two hole bands appear at both the \(\Gamma\) and \(Z\) points because of \(S\) polarization, which contrasts with previous studies that report three hole bands at the \(\Gamma\) point \[12,13,24\]. The use of \(S\) polarization prevents the innermost hole band at the \(\Gamma\) point from being clearly recognized in Fig. 1. The band detected by \(P\) polarization is shown in Supplemental Fig. S1 \[25\]. The observed inner and outer hole bands are attributed to \(d_{xz}\) and \(d_{yz}\) orbitals, respectively \[12\]. Figures 1(e) and 1(f) compare the dispersion of each band at \(T = 100\) and 12 K.

![FIG. 1. (a)–(d) ARPES images along the \(\Gamma-M\) and \(Z-A\) directions obtained by \(S\) polarization at \(\Gamma\) \((h\nu = 23\ \text{eV})\) and \(Z\) \((h\nu = 35\ \text{eV})\) points at \(T = 100\) and 12 K, respectively. The insets in (a) and (c) indicate the schematic FSs and measured momentum lines. (e), (f) Comparison of each band dispersion at the \(\Gamma\) and \(Z\) points between \(T = 100\) and 12 K. The solid and open circles/squares show the peak positions of the MDCs and EDCs, respectively. The cross marks in (f) are the same as the inner hole band at \(T = 12\) K after shifting up by 28 meV. (g), (h) Temperature-dependent ARPES images divided by the Fermi-Dirac function at the \(\Gamma\) and \(Z\) points. Solid circles and lines are the peak positions determined by the MDC fitting and its parabolic fitting, respectively.](image)
between the inner hole band at the Z point and that at the Γ point.

Figure 3 summarizes the energy shifts of the top (bottom) of the hole (electron) bands at the Γ and Z (M and A) points as a function of temperature. The energies of the top (bottom) of the hole (electron) bands were evaluated by a parabolic fitting of the EDC/MDC and the EDC’s/MDC’s second-derivative peak positions, as shown in Figs. 1 and 2. Figure 3(a) shows that the peak position of the Z point rapidly shifts below $T \sim 50$ K, which is approximately 2.5 times greater than T_c, in contrast to the lack of temperature dependence at the Γ point. At the M and A points [Fig. 3(b)], the shallow electron band around the A point also shifts below $T = 50$ K, but the deep electron band at the A point and the two electron bands at the M point are almost independent of temperature. It is noted that the reproducibility was checked by cleaving at both high (above 100 K) and low temperature (12 K). The shifted hole and electron bands are attributed to the d_{xz} and d_{yz} orbitals, respectively [12]. Therefore, our observations suggest that only the d_{xz} and d_{yz} orbitals exhibit an orbital-dependent electron correlation in LiFeAs. For 122-type $\text{AFE}_2-x\text{SE}_2$ systems ($A = \text{K, Rb}$), only the d_{xy} orbital has been reported to have orbital-dependent electron correlations, but these systems have no temperature-dependent band shifts [26]. Therefore, the observations in our study differ completely from those of 122-type $\text{AFE}_2-x\text{SE}_2$ systems.

To date, orbital ordering/fluctuations [9] and/or thermally excited carriers among the narrow bands [11] have been invoked to explain the temperature-dependent band shift in 122-type iron pnictide superconductors. However, in LiFeAs, neither the pseudogap nor the orbital-polarized electronic structure between the d_{xz} and d_{yz} orbitals at the M and A points are observed in our study; this suggests that the overall electronic structure in LiFeAs is not affected by orbital ordering/fluctuations. This is consistent with a recent scanning-tunneling-microscopy study in which LiFeAs does not have a symmetry-broken electronic structure, such as a 122-type nematic phase [27]. In addition, we observe that the narrow band at the Γ and M points does not shift but the narrow hole and electron bands at the Z and A points shift with temperature. The thermal excitation of carriers should be equivalent in a 3D momentum space; therefore, the temperature dependence of the band shift appears not to be due to the thermal excitation of carriers from the narrow bands.

Recently, a pseudogaplike feature below $T = 55$ K caused by antiferromagnetic fluctuations has been observed in ultrafast optical measurements for LiFeAs [28]. Indeed, the spin fluctuation is enhanced below $T \sim 50$ K [14,15]. This temperature of approximately 50 K is consistent with that of the observed band shift. This finding possibly suggests that the band shift is strongly related to spin fluctuations. In addition, in LiFeAs, a Lifshitz transition is observed in the hole FS with...
Theorem below. Our observation might imply the violation of the Luttinger’s theorem below $T = 50$ K (i.e., the hole concentration decreases, whereas the electron concentration increases). This feature is also observed in the normal state of NaFeAs, which is explained by short-range spin fluctuations rather than a structural transition and/or fourfold-rotational-symmetry breaking [28]. An important difference between LiFeAs and NaFeAs is that, in the former, no structural transition exists (nor SDW). Thus, the one of the plausible explanations for the band shift is the existence of short-range spin fluctuations, as discussed in Ref. [31]. As stated in that study, fast probes such as ARPES are likely to capture the effect of short-range (local and fluctuating) ordering. In a previous study [31], band folding was accompanied by a band shift, which is not observed in the present study. The intensity of the folded band in LiFeAs may be very weak as compared with that in NaFeAs; this may be due to the absence of SDW even at low temperatures. In LiFeAs, longitudinal magnetoresistance is observed below $T = 50$ K, which is similar to what happens in Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ because of short-range spin fluctuations [33]. Therefore, one of the plausible interpretations for the selective band shift of LiFeAs below 50 K is accompanied by short-range spin fluctuations but with no SDW transition.

IV. CONCLUSION

To summarize, we performed ARPES measurements of the stoichiometric superconductor LiFeAs to clarify the temperature-dependent electronic structure at the high-symmetry points. The results show that the d_{yz} hole band at the Z point and the $d_{xz/yz}$ electron band at the A point shift to higher binding energies below approximately 50 K, whereas the other bands have almost no temperature dependence. These results might suggest that a strong 3D orbital-dependent correlation exists above T_c, possibly accompanied by short-range spin fluctuations.

ACKNOWLEDGMENTS

The authors gratefully acknowledge M. Sakai for his technical assistance during the experiments. Part of this work was supported by the Use-of-UVSOR Facility Program (BL7U, 2012, 2013) of the Institute for Molecular Science. The work at DGIST was partially supported by the Leading Foreign Research Institute Recruitment Program (Grant No. 2012K1A4A3053565) and Basic Science Research Program (NRF-2013R1A1A2009478) through the National Research Foundation of Korea funded by MEST. T.I. acknowledges support from Grant-in-Aid for Challenging Exploratory Research from JSPS (Grant No. 26610085). T.H. was supported by a Grant-in-Aid for JSPS Fellows (Grant No. 13J02477).

[28] K.-H. Lin, K.-J. Wang, C.-C. Chang, Y.-C. Wen, D.-H. Tsai, Y.-R. Wu, Y.-T. Hsieh, M.-J. Wang, B. Lv, P. C.-W. Chu, and M.-K. Wu, Observation of pseudogap-like feature above T_c in LiFeAs and (Ba$_{0.88}$K$_{0.12}$)Fe$_2$As$_2$ by ultrafast optical measurement, arXiv:1407.3539.

