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ABSTRACT: The structure of interfacial water layers around nanoparticles dispersed
in an aqueous environment may have a significant impact on their reactivity and on
their interaction with biological species. Using transmission soft X-ray absorption
spectroscopy in liquid, we demonstrate that the unoccupied electronic states of oxygen
atoms from water molecules in aqueous colloidal dispersions of nanodiamonds have a
different signature than bulk water. X-ray absorption spectroscopy can thus probe
interfacial water molecules in colloidal dispersions. The impacts of nanodiamond surface chemistry and concentration on
interfacial water electronic signature are discussed.

The organization of water molecules close to solid
surfaces1−3 or around proteins4,5 differs significantly

from pure water. Structured water may impact protein
recognition2,6 but is also believed to affect electrochemical
and catalytic reactions at interfaces.7,8 Reorganization of solvent
molecules is likely to occur around colloidal nanoparticles9 and
its understanding is of outermost importance to better estimate
their reactivity and interaction with biological moieties in
aqueous environment. Nevertheless, the structure of solvent
molecules around nanomaterials in colloidal dispersion remains
largely unexplored.9−11

Nanodiamonds (NDs) are of particular interest for the
investigation of interfacial water since the existence of an
ordered water shell ranging from 2 to 4 water layers was
recently suggested.11,12 The interfacial water layer may play an
essential role in the colloidal stability of small NDs,13 in their
photoluminescence14 or in the enhancement of magnetic
resonance imaging signal from Gd-functionalized NDs,15 but its
structure is still unknown. Unusual water adsorption on dry
NDs have already been characterized by infrared spectrosco-
py16 and differential scanning calorimetry.12,17 Recently,
interfacial water layers around NDs were probed directly in
aqueous solution by interferometry11 and Raman spectrosco-
py14 but provided limited information about its molecular and
electronic structure.
X-ray Absorption Spectroscopy (XAS) and X-ray Emission

Spectroscopy (XES) at the oxygen K edge, probing respectively
the unoccupied and occupied electronic states through the
excitation of a core electron, were extensively applied to
characterize the solvation shells of ionic species in aqueous
solutions because these methods are sensitive to the hydrogen
bonds network of water.18−24 Recently, Total Electron Yield
(TEY) XAS measurements of gold electrode−water interface
demonstrated that interfacial water have a different electronic

structure than bulk water.1 TEY-XAS can though hardly be
applied to NDs colloidal dispersions because of the small
penetration length of electrons, which makes the method
extremely surface sensitive. We previously characterized the
electronic structure of NDs in aqueous dispersion by
fluorescence yield (FY) XAS and XES.25 Although this previous
study provided new insights on the influence of aqueous
dispersion on the surface chemistry of NDs, the water
organization around NDs could not be probed because FY-
XAS measurements are sensitive to saturation effects, which
complicates the interpretation of XA water spectra,18 and the
sensitivity of XES to the hydrogen bond network was not
sufficient to reliably estimate the water structure around NDs.25

In this communication, aqueous dispersions of NDs with
different sizes and surface chemistries are characterized by XAS
in pure transmission mode. Transmission measurements are
particularly relevant because they do not suffer from saturation
artifacts of FY measurements and are sensitive to the whole
volume exposed to X-rays, which is adapted to nanoparticle
dispersions. Experiments were performed at the UVSOR-III
synchrotron facility using a flow cell described elsewhere.26

Briefly, the liquid sample flows between two 100 nm-thick
silicon nitride membranes and is exposed to the soft X-ray
beam as shown on Figure 1. The thickness of the probed liquid
volume can be controlled down to 20 nm by modifying the
helium pressure in the chamber to have an optimal absorbance.
The transmitted X-rays are then detected with a photodiode.
Detonation ND aqueous dispersions produced by Plasma-

chem (NDs-PC, 3−5 nm), International Technology Center
(NDs-ITC, 5 nm), and NanoCarbon Research Institute (NDs-
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NRI, 3 nm) were compared to a high-pressure, high-
temperature ND aqueous dispersion (NDs-SYP from Van
Moppes, 18 nm). The hydrodynamic diameter and the zeta
potential (ZP) of NDs in aqueous dispersions characterized in
this study are summarized in Supporting Information (SI)
Table S1. NDs-SYP and NDs-NRI have hydrodynamic
diameter close to their core sizes, therefore these aqueous
dispersions are considered monodisperse. On the other hand,
NDs-PC and NDs-ITC form small aggregates with sizes up to
32.5 nm, which are probably induced by water dilution
performed before size measurement. Furthermore, detonation
NDs aggregates have a fractal structure with pores in the
nanometer range in which water can diffuse.17,27 Consequently,
we estimate that the extent of the ND−water interface is not
significantly affected by slight aggregation of NDs. Except for
NDs-NRI, the NDs exhibit negative ZP, which is related to
carboxylic groups on their surface.
XAS of the carbon K-edges of the different NDs aqueous

dispersions were first measured (Figure S2). The pre-edge
region below 289 eV is sensitive to the surface chemistry of
NDs. Π* transitions from sp2-hybridized carbon at 285.0 eV are
observed for NDs-NRI but cannot be clearly resolved on other
NDs. This feature demonstrates the presence of fullerene-like
reconstructions (FLRs) on the surface of NDs-NRI, which may
be at the origin of their positive ZP due to oxygen hole
doping.28 On the contrary, the shoulder at 287 eV, which was
previously attributed either to FLRs29 or to CO bonds,30 is
observed on all NDs except NDs-NRI. Considering that this
feature is not observed on NDs-NRI, covered by FLRs as
confirmed by the π* component at 285.0 eV, it can safely be
assigned to CO bonds.
The oxygen K-edges of the different NDs dispersions were

then compared to pure water (Figure 2). Typical water XA
spectra are constituted of three regions, the pre-edge at
534.7 eV, the main-edge between 537 and 538 eV and the post-
edge around 540 eV. The spectra were normalized before the
pre-edge and after the post-edge to take into account variations
in the sample thickness (see SI). The overall X-ray absorption is
higher for NDs dispersions but also differs with the samples. At
the main- and post-edges, the absorption coefficient increases
for decreasing NDs sizes as discussed later. On the other hand,
the intensity of the pre-edge peak at 534.7 eV is stronger for
NDs-PC and NDs-ITC, having larger sizes than NDs-NRI
(Figure 2).
Changes of X-ray absorption of the oxygen K-edge can be

interpreted in terms of modification of the hydrogen bond

network in interfacial water layers surrounding dispersed
NDs.18−22 Other explanations for XAS changes are unlikely
as discussed in Supporting Information. First, the increased
absorption for smaller NDs may be due to higher surface area,
increasing the amount of interfacial water molecules. Never-
theless, if the X-ray absorption increase in the main- and post-
edges correlates with the respective sizes of the NDs, changes
in the pre-edge cannot be simply explained in terms of higher
surface area. Indeed, XAS of NDs-NRI, having a higher surface
area but a positive ZP, present a smaller pre-edge than other
detonation NDs (Figure 2). As a consequence, the surface
charge of NDs also has to be taken into account.
A parallel can be performed with a recent report by Velasco-

Velez et al. on gold electrodes exposed to electrical bias.1 The
surface potential of the gold electrode was found to strongly
influence the XA spectra of interfacial water. In this study, the
pre-edge feature was clearly resolved at negative bias, while it
fully disappears for positive bias. This was interpreted as a result
of orientation of water molecules with their H atoms pointing
toward the negatively charged surface, increasing the number of
dangling hydrogen bonds at the interface. This is in line with
the modifications induced by oxidized NDs observed in the
pre-edge region in our case. Carboxylate groups on their surface
promote the breaking of hydrogen bonds between water
molecules in the first solvation shell. There are thus less water
molecules in double hydrogen bond donor configuration, and
the pre-edge feature in XAS increases.
On the other hand, positively charged NDs (NDs-NRI) have

lower impact in the pre-edge region, probably because the
positive surface charges favor orientation of water’s oxygen
atom toward the surface, leaving both hydrogen atoms available
for hydrogen bond formation. Interfacial water molecules
donating two hydrogen bonds are promoted, but this molecular
orientation does not contribute to the pre-edge region.1

Hydrogen bonds between neighboring water molecules in the
first solvation shell of positively charged NDs are thus
promoted compared to negatively charged NDs.

Figure 1. Transmission cell for XAS measurements of aqueous
dispersions of NDs.

Figure 2. (a) XAS of oxygen K-edge from water and 1% aqueous
dispersions of NDs with different origins in transmission cell. (b) Pre/
main-edge ratios for the different NDs dispersions. The sign of the
NDs ZP in water is indicated above the respective bars.
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The strong impact of NDs-NRI on the water structure is
confirmed by probing the evolution of oxygen K-edge XA
spectra at higher NDs concentrations up to 8.6 wt %. As seen in
Figure 3, the main- and post-edges increase significantly

compared to pure water, while the pre-edge is only slightly
perturbed. The X-ray absorption increases in similar amount at
main and post edges between 1 and 8.6 wt % NDs
concentrations. On the other hand, the pre/main-edge ratio
at 8.6 wt % NDs concentration represents only 60% of the
same ratio calculated for 1 wt % concentration (Figure 3b). The
quenching of the pre-edge in the interfacial water layer
surrounding positively charged NDs may result from the
orientation of water molecules with oxygen sites pointing
toward the NDs surface over several water layers.1 Due to this
arrangement, hydrogen bonds between the hydrogen sites of a
water layer with the oxygen site of the next water layer would
be stronger than in bulk water, resulting in a higher amount of
double donor/double acceptor water molecules, poorly
contributing to the pre-edge.
As a result, the increase in main- and post-edges at high

concentration of NDs-NRI appears extreme compared to other
reports by transmission XAS on aqueous ionic solutions20 and
methanol−water mixtures,22 although higher mass concen-
trations were used in these studies. The oxygen K-edge XAS
spectra include the contributions of both bulk water and the
interfacial water around NDs. By increasing the NDs
concentration, the ratio of the interfacial water is increased
compared to bulk water, which causes the increase of the main-
and post-edges for high NDs concentrations.
Whereas ions mostly perturb water molecules in their first

solvation shell,31 the disruption of the hydrogen bond network
induced by small NDs is more extended, apparently over more
than four hydration layers according to the strong changes
observed on XAS. Unlike ions, NDs are too large to be
engulfed in a hydration cage which would break a limited

amount of hydrogen bonds.32 In the same time, they are small
enough to offer a large interface and the surface polarization
orients water molecules in the first solvation shell. Further
investigations are required to estimate whether the long-range
order of water molecules around NDs may be correlated to the
high viscosity of detonation NDs dispersions at concentration
around 8−10 wt %.13,17

The electronic structure of interfacial water on NDs can be
compared to different forms of ice previously characterized by
X-ray Raman scattering.33,34 Tetrahedral ice and low density
amorphous ice present a predominant post-edge structure,
related to the less distorted hydrogen bond environment
dominated by tetrahedral hydrogen bonds.33 The electronic
signature of high-density amorphous ice,33,34 on the other hand,
is constituted of an intense main-edge and reduced pre- and
post-edges, which was attributed to a collapse of the second
hydration shell, resulting in higher water molecule density.20

This electronic signature is close to the one observed around
NDs, suggesting that the structure of the ordered water layer
around NDs might resemble high density amorphous ice. A
similar water structure was observed inside living cells,35

therefore NDs could potentially be used as a crowding agent to
mimic cellular environment.6

In summary, the hydrogen bond network of water molecules
in aqueous dispersions of NDs was probed by transmission
XAS. Orientation of water molecules in the first solvation shell
are found to depend on the ZP of NDs. In particular, more
hydrogen bonds are broken at the surface of negatively charged
NDs due to electrostatic interaction with carboxylate groups
while water molecules donating two hydrogen bonds are
dominant on positively charged NDs. A long-range ordering of
water molecules around NDs is also evidenced. At high NDs
concentration, the electronic structure of water molecules is
extremely different from bulk water due to the strong
contribution from interfacial water layers. The ordering of
water molecules on their surface might be comparable to the
arrangement of water molecules around proteins, which could
potentially explain the high affinity of NDs for protein
adsorption36 or participate to their low cytoxicity.37
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