Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jlumin

Full Length Article The d-f luminescence of Eu^{2+} , Ce^{3+} and Yb^{2+} ions in $Cs_2MP_2O_7$ (M = Ca^{2+} , Sr^{2+})

Tim Senden^{a,*}, Andries Meijerink^a

^a Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, P.O. Box 80 000, 3508 TA Utrecht, The Netherlands

ARTICLE INFO

Received 22 February 2016

Available online 5 May 2016

 $Cs_2MP_2O_7 (M = Ca^{2+}, Sr^{2+})$

Lanthanide d-f luminescence

Accepted 29 April 2016

Jahn-Teller deformation

Article history:

Keywords.

Stokes shift

ABSTRACT

The efficient narrow band emission of Eu^{2+} in $Cs_2MP_2O_7$ (M = Ca^{2+} , Sr^{2+}) is characterized by a large Stokes shift and a high quenching temperature which makes the material promising for application in warm white LEDs. The unusual Eu^{2+} luminescence properties were reported recently but an explanation for the peculiar behavior is lacking. In this paper we aim at providing new insights in the luminescence of the Eu^{2+} emission in Cs₂MP₂O₇ through measurements at cryogenic temperatures (down to 4 K) and by comparison with the d-f luminescence of Ce^{3+} and Yb^{2+} in the same host. The results reveal a sharp onset of the Eu²⁺ emission and excitation bands at 4 K. Usually the sharp onset for narrow excitation and emission bands coincide at an energy corresponding to the zero-phonon (purely electronic) transition, but for Eu^{2+} in $Cs_2MP_2O_7$ there is a large shift of 3500 cm⁻¹ between the onsets, consistent with the large Stokes shift observed. The onset shift can be explained by emission from a lower energy distorted excited 4f⁶5d¹ state. For Ce³⁺, the f-d absorption bands are at energies expected based on the relation between the absorption energies for Eu^{2+} and Ce^{3+} reported by Dorenbos. Contrary to Eu^{2+} , the emission for Ce³⁺ shows a normal Stokes shift and therefore the emission bands are at much higher energies than predicted from the energy of the Eu^{2+} emission and the Dorenbos relations. Based on the present results the unusually large Stokes shift for the Eu²⁺ emission in Cs₂MP₂O₇ is assigned to a Jahn-Teller like deformation in the excited $4f^{6}5d^{1}$ state of Eu²⁺ that is not present in the 5d state of Ce³⁺. © 2016 Elsevier B.V. All rights reserved.

1. Introduction

The optical properties of the Eu²⁺ ion (4f⁷) have been thoroughly investigated [1–5] and the efficient luminescence of Eu²⁺ is widely applied, e.g. in fluorescent tubes, white light LEDs (wLEDs), displays, scintillators and anti-counterfeiting labels [6–10]. The emission and absorption spectra of Eu²⁺ are characterized by broad absorption and emission bands corresponding to transitions between the 4f⁷ ground state and the 4f⁶5d¹ excited states. The energy level structure in the 4f⁶5d¹ excited state is strongly influenced by covalency and crystal field splitting [8]. As a result, the d–f emission of Eu²⁺ can vary from the ultraviolet to the red spectral region, depending on the host lattice.

In phosphates Eu^{2+} ions typically show a violet or blue emission and emission wavelengths between 375 nm (for Ba (PO₃)₂:Eu²⁺) and 505 nm (for NaCaPO₄:Eu²⁺) have been reported [1]. However, recently an unusual red Eu²⁺ emission was reported for a Eu²⁺-doped phosphate. In Cs₂CaP₂O₇ the d–f emission of Eu²⁺ is around 600 nm, while the absorption is in the

* Corresponding author. E-mail address: t.senden@uu.nl (T. Senden).

http://dx.doi.org/10.1016/j.jlumin.2016.04.050 0022-2313/© 2016 Elsevier B.V. All rights reserved. usual blue-ultraviolet spectral region [11]. As a result, the Stokes shift of the emission is very large ($\Delta S > 6000 \text{ cm}^{-1}$). The emission is further characterized by a high quantum yield and a high quenching temperature ($T_{0.5} \sim 600 \text{ K}$), which is unexpected in combination with a large Stokes shift [8]. The special optical properties make Cs₂CaP₂O₇:Eu²⁺ promising as a red emitting phosphor in warm white LEDs, where a narrow band red emission is required to reduce efficiency loss that is inherent to the use of broad band red emitters. Broad band red emitters that are used to shift the color temperature of wLEDs into the desired warm white spectral region have a significant part of their emission between 630 and 700 nm where the eye sensitivity is low. This reduces the lumen/W efficiency [9].

The large Stokes shift and narrow band emission reported for Eu^{2+} in $\text{Cs}_2\text{MP}_2\text{O}_7$ (M = Ca²⁺, Sr²⁺) were discussed by Srivastava et al. [11]. Based on the narrow band emission ($\Gamma^{\text{em}} \sim 2000 \text{ cm}^{-1}$ at 80 K), normal emission lifetime ($\tau \sim 1 \text{ }\mu\text{s}$) and high quenching temperature ($T_{0.5} \sim 600 \text{ K}$) it was concluded that the large Stokes shift cannot be explained by anomalous emission from an Eutrapped exciton state. In the past large Stokes shifts for Eu²⁺ emission have been explained by a trapped exciton emission, but in addition to a large Stokes shift, this emission is characterized by a large spectral width, longer lifetime and low quenching

Fig. 1. Schematic representation of the Eu^{2+} energy level scheme in (a) octahedral and (b) strongly deformed configuration.

temperature [2]. Clearly, these characteristics are not observed for the Eu²⁺ emission in Cs₂MP₂O₇. An alternative explanation that was suggested in Refs. [11,12] involves distortions in the 4f⁶5d¹ excited state. In Cs₂MP₂O₇ the Eu²⁺ ion is in an octahedral coordination. In Fig. 1 the crystal field splitting in O_h symmetry is illustrated. In the excited 5d state a, for example, tetragonal deformation can lower the energy of the lowest 4f⁶5d¹ state as illustrated in Fig. 1. Emission from the lowest 4f⁶5d¹ state will be shifted to a lower energy and can explain the large Stokes shift.

Substantial lattice deformations in the 5d excited state have previously been shown to give rise to large Stokes shifts (ΔS > 5000 cm⁻¹) for d-f emission of Ce³⁺ in halides [13-16]. As an example, for LaCl₃:Ce³⁺ ($\Delta S = 5800 \text{ cm}^{-1}$) it was found with ab initio calculations that in the excited 5d¹ configuration there is an off-center movement of the Ce^{3+} ion, which is accompanied by a strong deformation of the ligand prism around the Ce^{3+} ion [14]. Due to this deformation the crystal field splitting almost doubles, resulting in a very large Stokes shift. The results also explained why the concentrated system CeCl₃, despite having the same crystal structure as LaCl₃, had a very small Stokes shift of only 900 cm⁻¹. It was found that in CeCl₃ the more stable off-center Ce³⁺ position is already occupied in the ground state 4f¹ configuration, resulting in a small Stokes shift. It was determined that the off-center movement of the Ce^{3+} ion is due to a reorientation of the occupied 5d orbital by a (pseudo) Jahn-Teller mixing between the two lowest 5d states, as these are very close in energy [16]. A similar Jahn-Teller type deformation may play a role in explaining the large Stokes shift for $Cs_2MP_2O_7:Eu^{2+}$.

To investigate the origin of the large Stokes shift for the Eu^{2+} emission in Cs₂MP₂O₇ here we report luminescence spectra recorded at cryogenic temperatures. At low temperatures often zero-phonon lines and sharp onsets of excitation and emission spectra are observed which give information on the energy of the electronic origin of excited states involved. A shift of the zerophonon line or sharp onset between emission and excitation spectra can provide evidence for electronic relaxation in the excited state. In addition, the d-f luminescence for other lanthanide ions, Ce^{3+} and Yb^{2+} , is investigated and compared with the luminescence properties of Eu²⁺. The results reveal a large shift between the sharp onset in the excitation and emission spectra of Eu²⁺. Contrary to the unusually large Stokes shift and red-shifted emission observed for Eu^{2+} in $Cs_2MP_2O_7$, the luminescence of Ce^{3+} is normal in $Cs_2MP_2O_7$ indicating that the unusual luminescence properties are specific for the d-f emission of Eu^{2+} .

2. Experimental

Microcrystalline samples of $Cs_2MP_2O_7$ (M = Ca^{2+} , Sr^{2+}) doped with 0.1 or 1% of Eu^{2+} , Ce^{3+} or Yb^{2+} ions were synthesized using solid-state reaction techniques. The starting materials Cs_2CO_3 (10 mole% excess), $(NH_4)_2HPO_4$ (10 mole% excess), CaO, SrCO₃ and Eu_2O_3 , Yb_2O_3 or CeO_2 were thoroughly mixed and ground with a pestle in an agate mortar. The powder mixtures were dried at 300 °C for 1 h in air and, subsequently, fired twice at 750 °C ($Cs_2CaP_2O_7$) or 800 °C ($Cs_2SrP_2O_7$) for 5 h in a reducing atmosphere (10% H₂/90% N₂). The samples were thoroughly ground between each heating step. X-ray diffraction measurements confirmed that the $Cs_2CaP_2O_7$ and $Cs_2SrP_2O_7$ powders were single phase (see Fig. S1).

Photoluminescence (PL) spectra and decay curves of the samples were measured using an Edinburgh Instruments FLS920 fluorescence spectrometer, equipped with a 450 W xenon lamp as excitation source, a double excitation monochromator (0.22 m) and a single emission monochromator (0.22 m). For measurements down to 4 K, the samples were cooled in an Oxford Instruments liquid helium flow cryostat. Emission was detected with a Hamamatsu R928 photomultiplier tube (PMT). For lifetime measurements, Ce³⁺ ions were excited with a PicoQuant pulsed diode (PDL 800-B combined with PLS 270, $\lambda_{exc} = 270$ nm, pulse width 650 ps) and Eu²⁺ was excited with an Edinburgh EPL375 pulsed diode laser ($\lambda_{exc} = 376.8$ nm, pulse width 65 ps). The decay curves were recorded with a Hamamatsu H74422–40 PMT.

Excitation spectra in the deep UV and vacuum ultraviolet (VUV) region (between 150 and 300 nm) were recorded at the BL3B beamline of the UVSOR facility (Okazaki, Japan). This beamline consists of a 2.5 m off-plane Eagle type normal incidence monochromator, which covers the VUV, UV and visible (VIS) regions. In the present experiments a spherical grating with a groove density of 600 lines/mm optimized at a photon energy of ~ 16 eV was used. For the photoluminescence measurements in the UV-VIS region, a 0.22 m Acton monochromator with a Princeton Instruments CCD detector was used. Excitation spectra were recorded using a Hamamatsu R4220 PMT connected to the same monochromator.

3. Results and discussion

3.1. Eu^{2+} luminescence

To investigate the origin of the large Stokes shift luminescence spectra were recorded at cryogenic temperatures. At 4 K only the lowest vibrational level in the ground and excited states are thermally populated resulting in narrow bands in emission and excitation. Also, in case of weak electron-phonon coupling (small Huang–Rhys parameter S) zero-phonon lines may be observed in excitation and emission. For a specific electronic transition the zero-phonon line in excitation and emission are expected at the same energy, as has been observed for e.g. Eu^{2+} and Ce^{3+} [17–20]. Figs. 2 and 3 show the emission (red lines) and excitation spectra (blue lines) at T = 4 K of Cs₂CaP₂O₇:Eu²⁺ (1%) and Cs₂SrP₂O₇:Eu²⁺ (0.1%), respectively. The blue solid lines are the excitation spectra that were measured using the Edinburgh Instruments FLS920 fluorescence spectrometer and the blue broken lines are the excitation spectra that were recorded at beamline BL3B of the UVSOR facility.

In the excitation spectra a broad band is observed between 22 500 and 35 000 cm⁻¹, which is assigned to the Eu²⁺ 4f⁷ \rightarrow 4f⁶5d¹(t_{2g}) transition. At higher energy, around 45 000 cm⁻¹, another absorption band is observed that is assigned to the Eu²⁺ 4f⁷ \rightarrow 4f⁶5d¹(e_g) transition. The lower energy band shows the characteristic staircase

Fig. 2. The emission (red line; $\lambda_{exc} = 340 \text{ nm}$) and (V)UV excitation spectra (blue solid line; $\lambda_{em} = 630 \text{ nm}$ and blue dashed line; $\lambda_{em} = 640 \text{ nm}$) of Cs₂CaP₂O₇:Eu²⁺ (1%) at T = 4 K. The spectra recorded with the Edinburgh Instruments FLS 920 fluorescence spectrometer are the solid lines and the excitation spectrum measured at the UVSOR facility is the dotted line. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 3. The emission (red line; $\lambda_{exc} = 340 \text{ nm}$) and (V)UV excitation spectra (blue solid line; $\lambda_{em} = 570 \text{ nm}$ and blue dashed line; $\lambda_{em} = 560 \text{ nm}$) of Cs₂SrP₂O₇:Eu²⁺ (0.1%) at T = 4 K. The spectra recorded with the Edinburgh Instruments FLS 920 fluorescence spectrometer are the solid lines and the excitation spectrum measured at the UVSOR facility is the dotted line. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

structure of a Eu²⁺ $4f^7 \rightarrow 4f^6 [{}^7F_J]5d^1$ absorption band, which is caused by transitions to the seven ${}^7F_J (J = 0 - 6)$ multiplets of the $4f^6$ configuration in the $4f^65d^1$ excited state.

In order to calculate the crystal field splitting 10 Dq, we determine the energy difference between the onsets of the t_{2g} and e_g absorption bands. We find a crystal field splitting of 18 982 cm⁻¹ for Cs₂CaP₂O₇ and 17 281 cm⁻¹ for Cs₂SrP₂O₇. Alternatively, we can estimate the crystal field splitting by taking the energy difference between the maximums of t_{2g} and e_g absorption bands. Using this method, a crystal field splitting of 17 677 cm⁻¹ and 16 422 cm⁻¹ for Cs₂CaP₂O₇ and Cs₂SrP₂O₇, respectively. The results show that the crystal field splitting is larger in Cs₂CaP₂O₇ than in Cs₂SrP₂O₇, in agreement with Ref. [11]. The stronger crystal field splitting for Eu²⁺ in Cs₂CaP₂O₇.

The emission spectrum of Eu^{2+} activated $Cs_2CaP_2O_7$ and $Cs_2SrP_2O_7$ at T = 4 K is a narrow asymmetrical band centered around a peak energy E^{em} of 16 694 cm⁻¹ (599 nm) and 17 857 cm⁻¹ (560 nm) with a full width at half maximum intensity Γ^{em} of 1618 and 1506 cm⁻¹, respectively (see Figs. 2 and 3 and Table 1). At room temperature the emission bands are more

Table 1

Optical properties of Eu²⁺ ions in Cs₂CaP₂O₇ and Cs₂SrP₂O₇. Peak energy of the emission band E^{em} , full width at half maximum intensity of the emission band Γ^{em} , estimated energy of the 4f⁷→4f⁶ $[^7F_0]$ 5d¹ transition E^{abs} and the Stokes shift $\Delta S = E^{\text{abs}} - E^{\text{em}}$. All values are in cm⁻¹ and at T = 4 K.

Host	E ^{em}	$\Gamma^{\rm em}$	E ^{abs}	ΔS
Cs ₂ CaP ₂ O ₇	16 694	1618	22 989	6294
Cs ₂ SrP ₂ O ₇	17 857	1506	23 923	6066

symmetrical and broader (see Fig. S2), with a Γ^{em} that has increased to 3045 cm⁻¹ for M = Ca²⁺ and to 3138 cm⁻¹ for M = Sr^{2+} . The increase in emission bandwidth is due to thermal broadening. Previously it was reported that Γ^{em} is 2191 and 2147 cm⁻¹ at T = 80 K for M = Ca²⁺ and Sr²⁺, respectively [11]. These values fit nicely between the Γ^{em} values we have obtained at T = 4 K and room temperature. Besides an increase in bandwidth, the *E*^{em} has slightly shifted to higher energy (a blue shift of approximately 10 nm) when the temperature is increased to 298 K (see Fig. S2). The shift in E^{em} is attributed to emission from thermally occupied higher vibrational levels in the excited state and/or a small decrease in the crystal field strength when the temperature increases (longer $Eu^{2+} - O^{2-}$ distance). The luminescence properties in Figs. 2 and 3 are in agreement with the results previously reported for Cs₂MP₂O₇:Eu²⁺ at 80 K in Ref. [11]. However, the spectra shown in this work were recorded at 4 K instead of 80 K. At 4 K (the onsets of) the emission and excitation bands are better resolved, which is important for e.g. correctly determining the Stokes shift of the Eu^{2+} emission.

The Eu²⁺ emission is in the red (Cs₂CaP₂O₇:Eu²⁺) or yellow (Cs₂SrP₂O₇:Eu²⁺) spectral region, which is highly unusual for Eu²⁺ in a phosphate host lattice. The low energy luminescence originates from the very large Eu²⁺ Stokes shift (ΔS). ΔS of the Eu²⁺ emission is defined as the difference between the energy of the 4f⁷ \rightarrow 4f⁶[⁷F₀]5d¹ transition *E*^{abs} and the peak energy of the emission band *E*^{em}. The transition from the 4f⁷ ⁸S_{7/2} ground state to the 4f⁶[⁷F₀]5d¹ excited state corresponds to the first "step" in the characteristic staircase structure of the f–d absorption band. However, if the first step is not resolved in the spectra, *E*^{abs} can be determined by taking the energy at which, on the low-energy side, the excitation band has risen to 15–20% of the maximum of the "staircase" [1].

The values for E^{abs} and E^{em} are most accurately determined at cryogenic temperatures, as at 4 K there is least thermal broadening of the emission and excitation bands. Hence, the first step in the staircase is clearly resolved in our excitation spectra measured at 4 K (see Figs. 2 and 3). By locating the first step in the staircase structure, it is estimated that $E^{abs} = 22\ 989\ cm^{-1}$ for Cs₂CaP₂O₇ and 23 923 cm⁻¹ for Cs₂SrP₂O₇ (see also Table 1). The E^{abs} is lower for Cs₂CaP₂O₇ compared to Cs₂SrP₂O₇ as the stronger crystal field splitting in Cs₂CaP₂O₇ shifts the lowest 4f⁶5d¹ state to lower energies.

The values we find for E^{abs} are approximately 2000 cm⁻¹ lower in energy compared to those reported in Ref. [11]. However, in Ref. [11] a different method was used to estimate E^{abs} . Instead of using the common method to locate E^{abs} at the first step in the staircase, E^{abs} was determined by first fixing the ⁷F₆ level on the highest energy peak in the excitation spectra and then use a 5080 cm⁻¹ multiplet splitting of the Eu³⁺ ⁷F_J term to locate the position of the 4f⁶[⁷F₀]5d¹ level. However, the splitting of the ⁷F_J multiplets in the 4f⁶5d¹ state is often larger than the ~ 5080 cm⁻¹ observed for Eu³⁺ [1,21], explaining the difference in E^{abs} between Ref. [11] and the present work. Using the values determined for E^{abs} and E^{em} , we calculate the Stokes shift $\Delta S = E^{abs} - E^{em}$. It is found that $\Delta S = 6294$ and 6066 cm⁻¹ for M = Ca²⁺ and Sr²⁺, respectively (see Table 1). The estimated ΔS are approximately 2000 cm⁻¹ smaller compared to what is reported in Ref. [11], consistent with the lower values determined for E^{abs} . The ΔS values are significantly larger than the typical Stokes shift of $\Delta S = 1000-2000$ cm⁻¹ observed for Eu²⁺ d–f luminescence [1]. Moreover, the Stokes shift of Eu²⁺ in Cs₂MP₂O₇ is larger than the largest Stokes shift value ever reported for Eu²⁺ d–f luminescence ($\Delta S \approx 5300$ cm⁻¹ for Eu²⁺ in Sr₂SiO₄) [22].

At cryogenic temperatures the Stokes shift and emission bandwidth are expected to be of similar energy [21,19]. However, this is not the case for Eu²⁺ in Cs₂MP₂O₇ (see Table 1). In a first approximation ΔS (Eq. (1)) and Γ^{em} (Eq. (2)) can both be interpreted in terms of the Huang–Rhys parameter *S* and the lattice phonon energies. In the configurational coordinate model, assuming harmonic oscillators [23,24]:

$$\Delta S = (2S - 1)\hbar\omega \tag{1}$$

$$\Gamma(T) \cong 2.36\hbar\omega\sqrt{S}\sqrt{\coth\frac{\hbar\omega}{2kT}}$$
 (2)

Using Eqs. (1) and (2), we can estimate the expected Stokes shift from the emission bandwidth at 4 K, assuming that $\hbar\omega = 400 \text{ cm}^{-1}$ for a Eu²⁺ – O²⁻ vibration [24]. It is calculated that ΔS should be around 1950 and 1650 cm⁻¹ for Cs₂CaP₂O₇ and Cs₂SrP₂O₇, respectively. These values are significantly smaller than what is observed for Eu²⁺ in Cs₂MP₂O₇ (see also Table 1).

The low temperature spectra shown in Figs. 2 and 3 provide information on the origin of the unusually large Stokes shift that is observed for Eu^{2+} in $Cs_2MP_2O_7$. At cryogenic temperatures often zero-phonon lines and/or sharp onsets of the excitation and emission spectra are observed, coinciding on the energy of the electronic origin of excited states involved. Consequently, the low temperature spectra can show whether the emission and excitation bands used for determining the Stokes shift belong to the same electronic transition [24].

The spectra in Figs. 2 and 3 do not show any zero-phonon lines, but do reveal sharp onsets for the emission and excitation bands. Using the sharp onsets, we can estimate the energy of the zero-phonon (purely electronic) transition (E^{ZPL}) for the emission and excitation bands. For a specific electronic transition the sharp onsets of narrow excitation and emission bands coincide at an energy corresponding to the zero-phonon transition [17–20]. However, this is not the case for Eu²⁺ in Cs₂MP₂O₇, as there is a large energy difference between the sharp onsets (and estimated E^{ZPL}) of the emission and excitation bands. It is estimated that the shift between the onsets of the Eu²⁺ emission and excitation bands is around 3500 cm⁻¹, both for Cs₂CaP₂O₇ and Cs₂SrP₂O₇. This large "onset shift" is consistent with the large Stokes shift observed.

The large shift between the onsets of the Eu^{2+} emission and excitation bands shows that different excited states are involved in the emission and absorption process. This indicates that there is a substantial electronic relaxation in the $4f^{6}5d^{1}$ excited state, which can be due to a Jahn–Teller like deformation. As a consequence of this deformation in the excited state, the emission occurs from a lower energy excited $4f^{6}5d^{1}$ state, resulting in a very large Stokes shift, Jahn–Teller distortions in the Eu^{2+} $4f^{6}5d^{1}$ state have e.g. previously been observed for Eu^{2+} in CaF₂ and SrF₂ [25,26]. The Jahn–Teller splittings reported in Refs. [25,26] are smaller than 1000 cm⁻¹ and cannot explain the large Stokes shift observed for Eu^{2+} in Cs₂MP₂O₇. However, for Ce³⁺ there are several reports that substantial Jahn–Teller like deformations in the 5d excited state give rise to unusually large Stokes shifts [13–16]. For

Fig. 4. Excitation and emission spectra of $Cs_2CaP_2O_7:Ce^{3+}$ (1%) at T = 4 K. (a) Excitation (blue) and emission spectra (red) measured for $\lambda_{em} = 420$ nm and $\lambda_{exc} = 320$ nm. (b) Excitation (green) and emission spectra (red) measured for $\lambda_{em} = 340$ nm and $\lambda_{exc} = 262$ nm. The spectra recorded with the Edinburgh FLS 920 fluorescence spectrometer are the solid lines and the excitation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

example, it was found that the large Stokes shift of Ce³⁺ in LaCl₃ ($\Delta S = 5800 \text{ cm}^{-1}$) is due to an off-center movement of the Ce³⁺ ion accompanied by a strong deformation of the ligand prism. It was determined in Ref. [16] that the off-center movement of the Ce³⁺ ion is due to a reorientation of the occupied 5d orbital by a (pseudo) Jahn–Teller mixing between the two lowest 5d states. Similar Jahn–Teller deformations can occur in the 4f⁶5d¹ excited state of Eu²⁺ in Cs₂MP₂O₇. Therefore, based on the results presented in this Section we assign the unusually large Stokes shift for the Eu²⁺ emission in Cs₂MP₂O₇ to a Jahn–Teller like deformation in the excited 4f⁶5d¹ state of Eu²⁺.

3.2. Ce³⁺ luminescence

In this section we will present the luminescence properties of $Cs_2MP_2O_7:Ce^{3+}$. Usually the d–f emission properties of Eu^{2+} and Ce^{3+} are related [27]. Hence, we investigate if Ce^{3+} also has an unusually large Stokes shift of emission in $Cs_2MP_2O_7$.

Figs. 4 and 5 show emission and excitation spectra at 4 K of $Cs_2CaP_2O_7:Ce^{3+}$ (1%) and $Cs_2SrP_2O_7:Ce^{3+}$ (1%), respectively. We have measured the luminescence of the samples for $\lambda_{exc} \sim 320$ nm (Figs. 4a and 5a) and $\lambda_{exc} \sim 260$ nm (Figs. 4b and 5b). For both excitation wavelengths the samples show a strong blue/UV emission, which is attributed to the parity-allowed $5d^1 \rightarrow 4f^1$ transition of Ce^{3+} . The blue luminescence is also visible with the naked eye (see Fig. S3). The lifetime of the emission is 28 ns, which is characteristic for the spin- and parity-allowed d–f transition of Ce^{3+} .

The emission spectra displayed in Figs. 4a and 5a ($\lambda_{exc} = 320$ nm (Ca) or 316 (Sr) nm) show the typical doublet emission band observed for Ce³⁺ ions on a single lattice site (Ce1). The two emission bands are due to transitions from the lowest crystal field component of the 5d¹ configuration to the ²F_{5/2} and ²F_{7/2} levels of the 4f¹ ground state, which is split by spin-orbit coupling. The band of the lower-

Fig. 5. Excitation and emission spectra of $Cs_2SrP_2O_7:Ce^{3+}$ (1%) at T = 4 K. (a) Excitation (blue) and emission spectra (red) measured with $\lambda_{em} = 410$ nm and $\lambda_{exc} = 316$ nm. (b) Excitation (green) and emission spectra (red) measured with $\lambda_{em} = 330$ nm and $\lambda_{exc} = 260$ nm. The spectra recorded with the Edinburgh FLS 920 fluorescence spectrometer are the solid lines and the excitation spectra measured at the UVSOR facility are the dotted lines. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

energy $5d^1 \rightarrow {}^2F_{7/2}$ transition is weaker and therefore less apparent, especially for Cs₂CaP₂O₇:Ce³⁺ were only a weak shoulder is observed around 25 000 cm⁻¹. The two peaks of the band are separated by ~ 2000 cm⁻¹, which corresponds to the spin-orbit splitting of the 2F ground state term of Ce³⁺ [8].

Figs. 4b and 5b show that the shape of the Ce³⁺ emission spectra is different when excitation is at ~260 nm instead of ~320 nm. This indicates that two different Ce³⁺ emission sites are present in Cs₂MP₂O₇. The presence of two distinct Ce³⁺ sites is confirmed by the excitation spectra shown in Figs. 4 and 5. The excitation spectra of the Ce1 and Ce2 emission both consist of several overlapping bands, which are attributed to $4f^1 \rightarrow 5d^1$ transitions of Ce³⁺. However, it is observed that the structure, i.e. peak positions and splitting of the excitation spectra of the Ce1 emission band (see Figs. 4a and 5a) is significantly different from the excitation spectra recorded for the Ce2 emission (see Figs. 4b and 5b). This confirms that the local environment of the two Ce³⁺ centers is different.

The splitting of the 5d¹ state in the excitation spectra provides information on the local environment of the two Ce³⁺ sites. Ce³⁺ is in octahedral coordination in Cs₂MP₂O₇ and therefore a splitting of the 5d¹ state into a 5d¹(t_{2g}) and 5d¹(e_g) state is expected, the t_{2g} state being lower in energy. For the lower energy Ce1 site (Fig. 4a and Fig. 5a), the excitation band between 30 000 and 40 0000 cm⁻¹ is assigned to the 4f¹ \rightarrow 5d¹(t_{2g}) transition. The t_{2g} excitation band is split into three bands, which is explained by either a large spinorbit coupling [19,28] or a slightly lower site symmetry for the Ce³⁺ ion (distorted octahedron). The excitation band between 40 000 and 55 000 cm⁻¹ is assigned to the 4f¹ \rightarrow 5d¹(e_g) transition. In the excitation spectra of the higher energy Ce2 site (Fig. 4b and Fig. 5b) we identify six 4f¹ \rightarrow 5d¹ excitation bands (A–F), which means that the 5d¹ configuration is split into at least six different

states. This indicates that the symmetry of the Ce2 site is much lower than (slightly distorted) octahedral.

The formation of two geometrically different Ce^{3+} sites for $Cs_2MP_2O_7:Ce^{3+}$ is probably due to the charge compensation required for the $Ce_{M^{2+}}^{\bullet}$ site. The charge compensating defect can be local or distant, i.e. in the first shell of cations around the Ce^{3+} ion or further away in the lattice. A distant defect will not influence the local geometry around the Ce^{3+} ions, whereas a local defect can cause a deformation of the oxygen octahedron around the Ce^{3+} ion. Hence, we expect that the (octahedral) Ce1 site is the distantly charge compensated site, whereas the lower symmetry Ce2 site has local charge compensation in $Cs_2MP_2O_7$. Alternatively, the extra Ce^{3+} emission center can be in a second crystal phase doped with Ce^{3+} ions. This however seems unlikely, as the XRD patterns in Fig. S1 show that no significant impurity crystal phases are present in our samples.

The crystal field splitting of the 5d configuration (ϵ_{cfs}) for Ce³⁺ in Cs₂MP₂O₇ can be estimated from the excitation spectra of the (slightly distorted) octahedral Ce1 site. The ϵ_{cfs} is calculated by taking the energy difference between the maxima of the t_{2g} and e_g excitation band. We find a ϵ_{cfs} of 20 346 and 19 736 cm⁻¹ for $Cs_2CaP_2O_7$ and $Cs_2SrP_2O_7$, respectively. The ϵ_{cfs} of the Ce^{3+} 5d configuration is stronger in Cs₂CaP₂O₇, in agreement with the results for Eu^{2+} . There are several compounds for which the ϵ_{cfs} of the 5d configuration for both Ce^{3+} and Eu^{2+} is known. Using the data of these compounds, it was determined that the that ϵ_{cfs} in Eu^{2+} is 0.77 times that in Ce^{3+} [27]. If we compare the ϵ_{cfs} of Eu^{2+} and Ce^{3+} in $Cs_2MP_2O_7$, we find an $\epsilon_{cfs}(Eu^{2+})/\epsilon_{cfs}(Ce^{3+})$ ratio of 0.87 and 0.83 for $Cs_2CaP_2O_7$ and $Cs_2SrP_2O_7$, respectively (ϵ_{cfs} values determined by taking the energy difference between the maxima of the $t_{2 g}$ and e_{g} band). These values are close to the 0.77 ratio determined in Ref. [27].

From the excitation and emission spectra in Figs. 4 and 5 we can determine the Stokes shift of the Ce³⁺ emission of Cs₂MP₂O₇: Ce³⁺. If the Stokes shift of the Ce³⁺ emission is anomalously large like the Stokes shift of the Eu²⁺ d–f emission, this would indicate that also substantial electronic relaxation occurs in the 5d excited state of Ce³⁺. The Stokes shift (ΔS) of the Ce³⁺ emission is defined as the difference between the energy E^{abs} of the transition from the 4f^{1 2}F_{5/2} ground state to the lowest 5d¹ excited state and the peak energy E^{em} of the emission band belonging to the reverse 5d¹ \rightarrow ²F_{5/2} transition. E^{abs} is the peak energy of the lowest-energy excitation band in the excitation spectra. The E^{abs} , E^{em} and ΔS values determined for the Ce1 and Ce2 emission centers in Cs₂CaP₂O₇ and Cs₂SrP₂O₇ are listed in Table 2.

Before we discuss the ΔS , let us consider the absorption energy E^{abs} and emission energy E^{em} . For both emission centers, the energy E^{abs} of the Ce³⁺ 4f¹ \rightarrow 5d¹ transition is lower for Cs₂CaP₂O₇ compared to Cs₂SrP₂O₇. This is attributed to the stronger crystal-field splitting for Ce³⁺ in Cs₂CaP₂O₇. The E^{em} is lower for Cs₂CaP₂O₇:Ce³⁺ (both Ce1 and Ce2), which is in agreement with the results obtained for Eu²⁺. The values for E^{abs} and E^{em} of Cs₂MP₂O₇:Ce³⁺ are also in agreement with what is typically found for Ce³⁺ in phosphate host lattices [29,30].

Table 2

Optical properties of Ce^{3+} ions in $Cs_2CaP_2O_7$ and $Cs_2SrP_2O_7$. Estimated energy of the lowest $4f^1 \rightarrow 5d^1$ absorption band E^{abs} , peak energy of the $5d^1 \rightarrow^2 F_{5/2}$ emission band E^{em} , and the Stokes shift $\Delta S = E^{abs} - E^{em}$. All values are in cm⁻¹ and at T = 4 K.

Host	E ^{abs}	E ^{em}	ΔS
Cs ₂ CaP ₂ O ₇ :Ce1	30 675	26 738	3937
Cs ₂ SrP ₂ O ₇ :Ce1	31 546	27 624	3922
Cs ₂ CaP ₂ O ₇ :Ce2	32 468	29 499	2969
Cs ₂ SrP ₂ O ₇ :Ce2	32 895	30 211	2684

In Table 2 it can be seen that for $Cs_2CaP_2O_7:Ce^{3+}$ the Stokes shift of the Ce1 emission center ($\Delta S = 3937 \text{ cm}^{-1}$) is larger than the Stokes shift of the Ce2 emission center ($\Delta S = 2969 \text{ cm}^{-1}$). A similar result is observed for $Cs_2SrP_2O_7:Ce^{3+}$. The Stokes shift values of both emission centers are in the range of $\Delta S = 1000-5000 \text{ cm}^{-1}$ that is typically observed for Ce^{3+} in (phosphate) compounds [29,15]. This is in contrast with the Stokes shift obtained for the Eu²⁺ d–f emission in $Cs_2MP_2O_7$, which is unusually large.

The E^{abs} and ΔS values of Ce^{3+} and Eu^{2+} in $Cs_2MP_2O_7$ can be compared quantitatively using relations that have been determined by Dorenbos [27]. In Ref. [27] it was shown that the redshift of absorption, the Stokes shift of emission, the centroid shift of the 5d configuration and the total crystal field splitting of the 5d levels of Eu^{2+} and Ce^{3+} all appear to be linearly related to one another. The relations for E^{abs} and ΔS are [27]:

$$E^{\rm abs}({\rm Eu}^{2+}) = (0.64 \pm 0.02)E^{\rm abs}({\rm Ce}^{3+}) + (0.53 \mp 0.06) \,{\rm eV},$$
 (3)

$$\Delta S(\text{Eu}^{2+}) = (0.61 \pm 0.03) \Delta S(\text{Ce}^{3+}).$$
(4)

We use the results of $Cs_2MP_2O_7$:Eu²⁺ and Eqs. (3) and (4) to predict the E^{abs} and ΔS of Ce^{3+} in $Cs_2CaP_2O_7$ and $Cs_2SrP_2O_7$. The calculated Ce^{3+} (calc) values for E^{abs} and ΔS are listed in Table 3, together with the experimental values of Eu²⁺ and the Ce1 and Ce2 emission centers. The data in Table 3 show a good agreement between the experimental E^{abs} values of the Ce1 emission and E^{abs} values calculated for Ce^{3+} . However, the experimental E^{abs} values of the Ce2 sites are just outside the range predicted for E^{abs} . This discrepancy can be due to a weaker crystal field splitting for the locally charge compensated Ce2 site.

In contrast to E^{abs} , we observe large differences between the calculated and experimental values for the Ce³⁺ Stokes shift in Table 2. The Stokes shift predicted for the Ce³⁺ emission is more than 1.2 eV, which is larger than Stokes shifts experimentally observed for Eu²⁺ (~0.75 eV). The Stokes shifts obtained for Ce³⁺ from the spectra in Figs. 4 and 5 are however significantly smaller, with values of 0.3–0.5 eV for the Ce1 and Ce2 emission centers. It is clear that the Stokes shift of Eu²⁺ and Ce³⁺ in Cs₂MP₂O₇ do not show any relation. The observation of a normal Stokes shift for Ce³⁺ indicates that only weak electronic relaxation takes place in the 5d excited state, and consequently there is no evidence for a substantial excited state deformation as suggested for Eu²⁺ in Cs₂MP₂O₇.

3.3. Ytterbium luminescence

We have synthesized ytterbium doped Cs₂CaP₂O₇ and Cs₂SrP₂O₇ to investigate the d–f luminescence of Yb²⁺ ions in Cs₂MP₂O₇. The d–f luminescence of Yb²⁺ and Eu²⁺ are expected to be related [31] and therefore the Stokes shift of the Yb²⁺ emission may also be unusually large. In contrast to Ce³⁺ions, Yb²⁺ ions require no charge compensation when substituted into

Table 3

4f → 5d absorption energy E^{abs} and Stokes shift ΔS of Eu^{2+} and Ce^{3+} in $Cs_2CaP_2O_7$ and $Cs_2SrP_2O_7$. The values displayed for Ce^{3+} (calc) were determined using Eqs. (3) and (4). Ce1 and Ce2 represent the two different Ce^{3+} emission centers observed for $Cs_2MP_2O_7$: Ce^{3+} . All values are in eV.

Property	Eu ²⁺	Ce ³⁺ (calc)	Ce1	Ce2
$E^{abs} (Ca)$ $\Delta S (Ca)$ $E^{abs} (Sr)$ $\Delta S (Sr)$	2.85 0.78 2.97 0.75	$\begin{array}{c} 3.63 \pm 0.21 \\ 1.28 \pm 0.06 \\ 3.81 \pm 0.21 \\ 1.23 \pm 0.06 \end{array}$	3.80 0.49 3.91 0.49	4.03 0.37 4.08 0.33

 $Cs_2MP_2O_7$. As a consequence, Yb^{2+} -doped $Cs_2MP_2O_7$ will better resemble $Cs_2MP_2O_7$:Eu²⁺.

The syntheses of Yb-doped Cs₂CaP₂O₇ and Cs₂SrP₂O₇ were carried out under a reducing atmosphere (10% H₂/90% N₂) to reduce the Yb³⁺ ions of the Yb-precursor (Yb₂O₃) to Yb²⁺ ions. However, no Yb²⁺ d–f luminescence was observed for Cs₂MP₂O₇:Yb, even down to 4 K. Furthermore, no Yb²⁺ f–d absorption band was visible in the diffuse reflection spectra between 300 and 400 nm. We instead did observe Yb³⁺ ²F_{5/2} \rightarrow ²F_{7/2} f–f luminescence for Yb-doped Cs₂MP₂O₇ (see Fig. S4). These observations indicate that Yb is not stable in the divalent state in Cs₂MP₂O₇. Indeed, of all the lanthanides, Eu is most easily reduced to the divalent state and also in the Eu-doped Cs₂MP₂O₇ luminescence of Eu³⁺ ions was observed. Based on this, it is not surprising that Yb²⁺ cannot be stabilized in Cs₂MP₂O₇. Since no Yb²⁺ luminescence is measured, no comparison can be made between the luminescence properties of Eu²⁺ and Yb²⁺ ions in Cs₂CaP₂O₇ and Cs₂SrP₂O₇.

4. Conclusions

Previous reports have shown that the d-f luminescence of Eu^{2+} ions in $Cs_2MP_2O_7$ (M = Ca^{2+} , Sr^{2+}) is characterized by an unusually large Stokes shift $\Delta S > 6000$ cm⁻¹. To gain insight in the origin of this large Stokes shift, we investigated the d-f luminescence of Eu²⁺ ions in Cs₂MP₂O₇ at cryogenic temperatures (down to 4 K). Furthermore, we compared the Eu²⁺ luminescence to the d-f luminescence of Ce^{3+} and Yb^{2+} ions in $Cs_2MP_2O_7$. At cryogenic temperatures, a large energy shift of around 3500 cm^{-1} between the sharp onsets of the Eu^{2+} emission and excitation bands was observed. This is surprising as the emission and excitation onsets of a specific electronic transition usually coincide. The onset shift indicates that there is a substantial electronic relaxation in the 4f⁶5d¹ excited state, which can be due to a Jahn-Teller like deformation in the excited state. As a consequence of this deformation, the emission occurs from a lower energy excited 4f⁶5d¹ state, resulting in a very large Stokes shift.

 $Cs_2MP_2O_7$: Ce^{3+} showed UV/blue Ce^{3+} d-f luminescence from two different Ce^{3+} sites. The formation of two distinct Ce^{3+} sites can be understood from the need for charge compensation for Ce^{3+} ions on the M^{2+} site. Contrary to Eu^{2+} , the emission for Ce^{3+} showed a normal Stokes shift of 2500–4000 cm⁻¹ and therefore the emission bands are at much higher energies than would be predicted from the energy of the Eu^{2+} emission and the Dorenbos relations. The normal Ce^{3+} Stokes shift indicates that, in contrast to Eu^{2+} , no Jahn–Teller like deformation takes place in the 5d state of Ce^{3+} . Unfortunately no Yb^{2+} d–f luminescence was observed for $Cs_2MP_2O_7$:Yb.

The results in this work indicate that the large Stokes shift for the Eu^{2+} emission of $Cs_2MP_2O_7$: Eu^{2+} can be explained by a Jahn–Teller like deformation in the excited state. To confirm that a substantial deformation in the excited state occurs, it is interesting to try measure the changes in the local geometry around the Eu^{2+} ion in the excited state, i.e. differences in the $Eu^{2+}-O^{2-}$ distances. An excellent technique to measure the local geometry around an impurity ion is X-ray absorption spectroscopy, more particularly, Extended X-ray Absorption Fine Structure (EXAFS) and X-ray absorption Near Edge Structure (XANES) [32]. Recently, time-resolved x-ray absorption spectroscopy (TR-XAS) experiments have been used to measure local geometric changes in the excited state of various organometallic complexes and metal ions in solids [33–35]. Hence, future experiments with EXAFS and XANES are interesting for investigating the geometric structure in the Eu^{2+} 4f⁶5d¹ excited state.

Acknowledgments

We thank Prof. M. Kitaura, Prof. J. Ueda and K. Asami, MSc for their help and skillful assistance in the VUV experiments at the UVSOR facility (UVSOR project number 27-515). The support of the UVSOR (Okazaki, Japan) is gratefully acknowledged. This work is financially supported by Technologiestichting STW, which is part of the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO).

Appendix A. Supplementary data

Supplementary data associated with this paper can be found in the online version at http://dx.doi.org/10.1016/j.jlumin.2016.04.050.

References

- [1] P. Dorenbos, J. Lumin. 104 (4) (2003) 239.
- [2] P. Dorenbos, J. Phys. Condens. Matter 15 (17) (2003) 2645.
- [3] S.H.M. Poort, H.M. Reijnhoudt, H.O.T. van der Kuip, G. Blasse, J. Alloys Compd. 241 (1-2) (1996) 75.
- [4] S.H.M. Poort, A. Meijerink, G. Blasse, J. Phys. Chem. Solids 58 (9) (1997) 1451.
- [5] K. Van den Eeckhout, P.F. Smet, D. Poelman, Materials 3 (4) (2010) 2536.
- [6] B.M.J. Smets, Mater. Chem. Phys. 16 (3-4) (1987) 283.
- [7] C. Feldmann, T. Jüstel, C.R. Ronda, P.J. Schmidt, Adv. Funct. Mater. 13 (7) (2003) 511.
- [8] G. Blasse, B.C. Grabmaier, Luminescent Materials, Springer-Verlag, Heidelberg, 1994
- [9] P.F. Smet, A.B. Parmentier, D. Poelman, J. Electrochem. Soc. 158 (6) (2011) R37.
- [10] F. Suyver, A. Meijerink, Chemisch2Weekblad 98 (4) (2002) 12.
- [11] A.M. Srivastava, H.A. Comanzo, S. Camardello, S.B. Chaney, M. Aycibin, U. Happek, J. Lumin. 129 (9) (2009) 919.

- [12] A.M. Srivastava, H.A. Comanzo, S. Camardello, M. Aycibin, U. Happek, ECS Trans. 25 (9) (2009) 201.
- [13] M. Marsman, J. Andriessen, C.W.E. van Eijk, Phys. Rev. B 61 (24) (2000) 16477.
 [14] J. Andriessen, O.T. Antonyak, P. Dorenbos, P.A. Rodnyi, G.B. Stryganyuk, C.W. E. van Eijk, A.S. Voloshinovskii, Opt. Commun. 178 (4–6) (2000) 355.
- [15] P. Denbos, J. Andriessen, M. Marsman, C.W.E. van Eijk, Radiat. Eff. Defects Solids 154 (3–4) (2001) 237.
- [16] J. Andriessen, E. van der Kolk, P. Dorenbos, Phys. Rev. B 76 (7) (2007) 075124.
 [17] S. Lizzo, A.H. Velders, A. Meijerink, G.J. Dirksen, G. Blasse, J. Lumin. 65 (6) (1995) 303.
- [18] Z. Pan, L. Ning, B.-M. Cheng, P.A. Tanner, Chem. Phys. Lett. 428 (1–3) (2006) 78.
- [19] L. van Pieterson, M.F. Reid, R.T. Wegh, S. Soverna, A. Meijerink, Phys. Rev. B 65 (4) (2002) 045113.
- [20] V. Bachmann, C. Ronda, A. Meijerink, Chem. Mater. 21 (10) (2009) 2077.
- [21] A. Meijerink, G. Blasse, J. Lumin. 43 (5) (1989) 283
- [22] S.H.M. Poort, W. Janssen, G. Blasse, J. Alloys Compd. 260 (1-2) (1997) 93.
- [23] B. Henderson, G.F. Imbusch, Optical Spectroscopy of Inorganic Solids, Clarendon Press, Oxford, 1989.
- [24] M. de Jong, L. Seijo, A. Meijerink, F.T. Rabouw, Phys. Chem. Chem. Phys. 17 (26) (2015) 16959.
- [25] L.L. Chase, Phys. Rev. Lett. 23 (6) (1969) 275.
- [26] L.L. Chase, Phys. Rev. B 2 (7) (1970) 2308.
- [27] P. Dorenbos, J. Phys. Condens. Matter 15 (27) (2003) 4797.
- [28] R.W. Schwartz, P.N. Schatz, Phys. Rev. B 8 (7) (1973) 3229.
- [29] P. Dorenbos, J. Lumin. 91 (3-4) (2000) 155.
- [30] P. Dorenbos, Phys. Rev. B 64 (12) (2001) 125117.
- [31] P. Dorenbos, J. Phys. Condens. Matter 15 (3) (2003) 575.
- [32] D.C. Koningsberger, R. Prins, X-Ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES, Wiley-Interscience, Hoboken, 1987.
 [33] E. Vorobeva, S.L. Johnson, P. Beaud, C.J. Milne, M. Benfatto, G. Ingold, Phys. Rev.
- [33] E. Vorobeva, S.L. Johnson, P. Beaud, C.J. Milne, M. Benfatto, G. Ingold, Phys. Rev. B 80 (13) (2009) 134301.
- [34] R.M. Van Der Veen, C.J. Milne, A.E. Nahhas, F.A. Lima, V.T. Pham, J. Best, J.A. Weinstein, C.N. Borca, R. Abela, C. Bressler, M. Chergui, Angew. Chemie Int. Ed. 48 (15) (2009) 2711–2714.
- [35] A. El Nahhas, R.M. van der Veen, T.J. Penfold, V.T. Pham, F.A. Lima, R. Abela, A. M. Blanco-Rodriguez, S. Záliš, A. Vlček, I. Tavernelli, U. Rothlisberger, C. J. Milne, M. Chergui, J. Phys. Chem. A 117 (2) (2013) 361–369.