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Abstract. An azimuthal rotatable sample cell, an electrochemical cell and a controlled humidity cell for in-situ scanning 
transmission X-ray microscopy (STXM) were developed at UVSOR-III Synchrotron (Okazaki, Japan). By using these 
sample cells, the polarization dependence of sodium titanate nanoribbons, in-situ electrochemistry of 0.1M FeSO4 
solution, and in-situ morphological change of a functional polymer with changing humidity were successfully measured.  

INTRODUCTION 

In-situ spectromicroscopic measurements can reveal dynamics of morphological, physical and chemical 
processes. In-situ techniques have been developed for spectromicroscopic studies of heavy elements using hard X-
rays with high transmittance in samples and long focal length of optical elements (i.e. long working distance) at 
photon energies >4 keV. On the other hand, in-situ measurements in the soft X-ray region for spectromicroscopic 
studies of light elements face significant technical challenges due to several difficulties, such as low transmittance 
and short focal lengths of optical elements. Scanning transmission X-ray microscopy (STXM) in the soft X-ray 
region is a promising technique for in-situ observation, considering its characteristics, such as high energy resolving 
power, high spatial resolution, low radiation damage and 2-dimensional (and 3-dimensional) chemical state analysis 
by using near edge X-ray absorption fine structure (NEXAFS). In UVSOR-III Synchrotron, Institute for Molecular 
Science (Okazaki, Japan), a STXM system was installed on the in-vacuum soft X-ray undulator beamline BL4U in 
2012 and started user operation in 2013 [1]. Since then, we have been developing several types of sample cells and 
in-situ measurement methods to study soft matter such as polymer and biological systems. The sample cells 
described in this article are compatible with Bruker ASC (now, Research Instruments) STXM systems installed at 
SLS, BESSY-II, PLS, DLS, Soleil and so on. 

 NEW DESIGN OF A FRESNEL ZONE PLATE 

One of the technical challenges for in-situ measurements by STXM is the very short working distance. A 
schematic of the optical system of STXM is shown in Fig. 1. The 
incoming X-rays are focused by a Fresnel zone plate (FZP) onto a 
sample through an order sorting aperture (OSA). The working 
distance is defined as the distance between OSA and the sample. In 
some in-situ sample cells described below (e.g. the electrochemical 
cell and the humidity control cell), a silicon nitride membrane 
(frame thickness of 200 µm) and a top cover plate (thickness of 

Fig. 1: Schematic of the optical 
system of STXM 
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~100 µm) are used and additional clearance of 100 µm is needed for safety. To apply STXM of UVSOR-III 
Synchrotron to soft matter study, the C K-edge has to be covered as the lowest energy (i.e. condition of the shortest 
working distance) for the in-situ devices. In order to meet this requirement, a new FZP with the working distance 
more than 400 µm is required at 275 eV. Therefore, we have acquired a new FZP with outermost zone width of 35 
nm, diameter of 240 µm and central stop diameter of 95 µm. By using the new FZP with an OSA of diameter of 65 
µm, the working distance is >500 µm at the C K-edge.  

AZIMUTHAL ROTATABLE SAMPLE CELL [2] 

The absorption spectra of samples with anisotropic chemical bonding can show spectral changes as the 
polarization of the incoming linearly polarized X-rays is changed [3]. Samples with random orientations do not 
show polarization dependent X-ray absorption spectra. STXM can be used to measure polarized 2-dimensional maps 
of individual molecular orientations [4]. Typically, this kind of measurement is performed with a polarization 
tunable insertion device, such as an elliptical polarizing undulator. BL4U at UVSOR-III Synchrotron is equipped 
with an in-vacuum undulator which has fixed horizontal linear polarization. Therefore, we developed a sample cell 
which can rotate the sample azimuthally from outside of the STXM chamber. This cell is modeled on that reported 
by Hernández-Cruz et al [5]. A photo of the azimuthal rotatable sample cell (ARSC) is shown in Fig. 2. The ARSC 
uses a small stepping motor (AM1020, Faulhaber) to adjust the azimuthal angle of the sample.  

Polarization dependent spectra of sodium titanate nanoribbons (STN) were measured using the ARSC. O 1s 
image sequences were obtained at several azimuthal angles. Figure 3a shows the azimuthal dependence of the O 1s 
spectrum of an individual nanoribbon, extracted from the same area of the sample (green rectangle in Fig. 3b). End 
member spectra corresponding to parallel and perpendicular orientation of the STN were extracted and used to fit 
the polarization dependent data, yielding a dichroic composite map (Fig. 3c). 

ELECTROCHEMICAL CELL [6] 

In-situ spectroscopic measurements of electro-
chemical reactions have been performed widely 
using infrared [7], hard X-rays [8,9] and soft X-rays 
[10,11]. By using STXM, 2-dimensional 
distribution of electrochemical reactions occurring 
on or near electrodes can be analyzed with high 
spatial resolution. An important advance in this 
work relative to earlier electrochemical STXM 
studies  [12,13] is that it is capable of continuous 
and interrupted flow of electrolytes, as opposed to 
previous systems which only used static (no-flow) 
conditions. The basic concept of a liquid flow cell 10 mm 
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Fig. 3 (a) Angle dependence of the O 1s spectrum of the green highlighted STN.  
(b) Optical density image of several STN. (c) Color composite mapping (carbon 
support as red, parallel component as green and perpendicular component as blue) 
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was developed by Nagasaka [14] and was modified for electrochemical experiments in the STXM. A photo and 
cross-sectional image of the electrochemical cell are shown in Fig. 4. The electrochemical cell consists of two 
silicon nitride membranes (thickness of 100 nm), teflon™ spacers (thickness of 20 µm) and two viton o-rings. The 
liquid electrolyte flows through a few micron gap between these membranes, driven by a peristaltic pump from 
outside of the STXM chamber via a fluidic feed through. The thickness of the gap can be optimized to get better 
contrast of target species by changing the pressure of helium gas in the STXM chamber. Three electrodes (50 nm 
thick gold with a Cr adhesion layer) - working (WE), counter (CE) and reference electrode (RE) - are deposited on 
the top (upstream) membrane. Electrical connections are made using a small home-made multi-pin connector. 

By using this flow electrochemical cell, in-situ Fe 2p spectroscopy of the electrochemical reaction of an 0.1 M 
FeSO4 aqueous solution was performed [6]. Figure 5a shows Fe 2p spectra of Fe(II) and Fe(III) measured in this 
system. These spectra were used to fit the Fe L3-edge energy stack data to obtain component maps of Fe(II), Fe(III) 
and the electrodes (constant), from which a color coded composite is presented in Fig. 5b. In the composite map, the 
Fe(II)-rich region of the solution is in red, the Fe(III)-rich region is in green, and the gold electrodes (WE, CE and 
RE) are in blue. The distribution of Fe(III) and Fe(II) was opposite from our expectation since the WE was positive 
relative to the CE. These results are under investigation. 

 

HUMIDITY CONTROL CELL 

A humidity control cell has been developed for in-situ measurements of the effects of water vapor on various 
materials [15-17]. The humidity control cell consists of a small chamber with two silicon nitride membranes for X-
rays, a relative humidity (RH) sensor, and three ports for gas inlet/outlet  (Fig. 6). The sample (polymer film on a 
TEM grid) is mounted on the top (upstream) silicon nitride membrane by scotch tape. By using the three ports for 
dry/wet gas inlet, the humidity in the sample cell is controlled by filling the cell with humid helium gas. 
Temperature and humidity inside the chamber are monitored by a small RH sensor (SHT7x, Sensirion AG) placed 
near the sample.  

The effect of humidity on a thin section (100 nm) of a functional polymer was studied by changing the humidity 
in-situ. Figures 7a and 7b show STXM images of the polymer with 8 % and 84 % RH at room temperature, 
respectively. The images were taken with an X-ray energy of 285.5 eV and were converted to optical density. In 
these images, bright areas (i.e. high optical density) show high density regions of the polymer and dark areas (i.e. 
low optical density) show voids in the polymer. By changing the humidity from 8% to 84%, 8% of the dark area, for 
example shown in red circles in Figs. 7a and 7b, decreased. This change of the area was caused by swelling of the 
polymer as it absorbed water vapor. 
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Fig. 7 Optical density images (285.5 eV) of a 
functional polymer at RH of (a) 8% , (b) 83%.  

Fig. 6 Photo of the main chamber (interior) and the 
base plate of the humidity control sample cell.  
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Fig. 5 (a) Fe(II) and Fe (III) spectra from an 
energy stack of 0.1 M FeSO4 (aq) at 0 V (Fe(II) 
and 0.6 V (Fe(III). (b) Composite of component 
maps of Fe(II) in red, Fe (III) in green and the 
electrodes in blue. 
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SUMMARY 

We have developed in-situ measurement methods by designing and commissioning an azimuthal rotatable 
sample cell, an electrochemical cell, and a humidity control cell for chemical and biological applications of STXM. 
These sample cells and automated control systems are under further improvement. These in-situ measurement 
methods will allow users of the STXM to explore new fields in soft materials science. Access to the STXM in 
UVSOR-III Synchrotron is either by peer reviewed proposals twice a year, or by purchased access. 
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